Wieland Thermal Solutions®

PROVIDING EFFICIENCY

AHR New Product & Technology Theater

Optimization of Copper Tubes for ACR Fin Coil Heat Exchangers

Steffen Rieger Wieland-Werke AG Technical Marketing Industrial Tubes

Dallas, TX 01/29/2013

Agenda

- Ø Introduction of Wieland
- Ø Inner-grooved copper tubes for fin coil heat exchangers:
 - § Why using copper?
 - § Why using inner-grooved tubes?
- Ø Correlation of tube unit weight and inside surface enhancement
- Ø Potential of high performance inner-grooved tubes
- Ø Reduction of tube unit weight
 - § Light weight tube design
 - § Thinner bottom wall
- Ø Miniaturization: Effect of reducing tube outside diameter
- Ø Development of inner-grooved tubes on customer demand

About Wieland

Manufacturer of semi-finished products

2 manufacturing sites in the US (NC and IL)

Headquartered in Germany

Founded in 1820

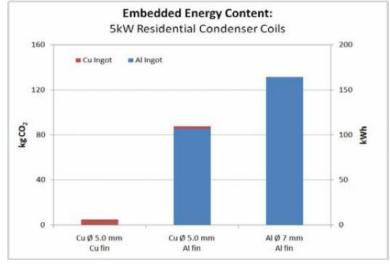
> 30 locations worldwide

Specialized in copper and copper

alloys

Wieland Thermal Solutions" PROVIDING EFFICIENCY

Wieland


Why using copper tubes for fin coil heat exchangers?

Ø Corrosion and durability –

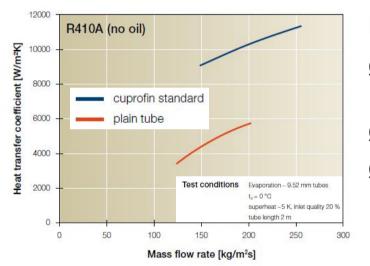
Copper coils feature superior and **reliable long-term performance.** Aluminum fin and tube combinations must be carefully matched and tested to provide sufficient corrosion protection and to maintain performance level long-term

Ø Environmental impact –

Carbon footprint of copper is extremely low. Energy consumption to produce aluminum is extremely high.

Source: IBIS

- Ø Optimized tube technology can be implemented into existing heat exchanger facilities immediately and with only slight investments into new equipment
- Ø Installation and assembly (brazing) is very easy and safe
- Ø Ease of service and reliable repair opportunity in the field
- Ø High flexibility to modify heat exchanger size / capacity very easily and quickly

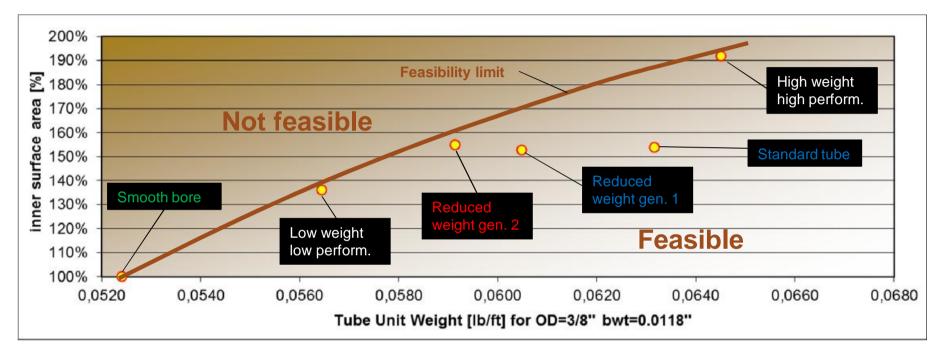

slide 4

Why using inner-grooved copper tubes?

With inner-grooved tubes (IGT), the inside heat transfer performance can be increased considerably.

Results:

- Ø Higher capacity of heat exchanger (HEX)
- Ø Improved energy efficiency
- Ø Reduced size of heat exchanger possible
 - \rightarrow smaller footprint
 - \rightarrow less material costs

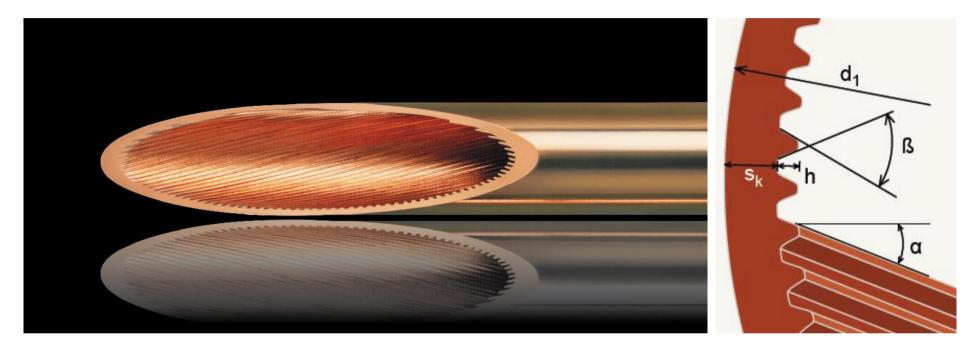


Wieland Thermal Solutions

Correlation of tube unit weight and inside surface enhancement of IGT

- $\boldsymbol{\varnothing}$ Lower inside surface results in lower unit weight
- Ø High performing tubes are heavier

Result: Tube type should be customized to achieve


optimum unit weight at required performance level

slide 6

Parameters of fin patterns

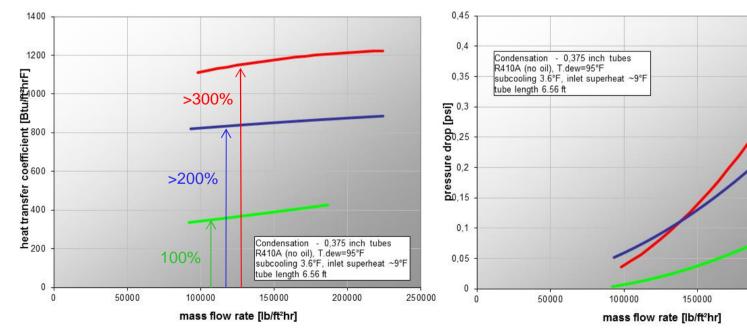
- h... fin height
- n... number of fins
- α ... lead angle (helical angle)
- β ... apex angle (fin angle)

- d₁... outside diameter
- s_k... bottom wall thickness

slide 7

Wieland Thermal Solutions®

High Performance


Base line

Smooth bore

Optimized tube design for increased tube side performance

Example: Condensation of R410A in 3/8" diameter tubes

Description	Outside Diam. [inch]	Bottom wall [inch]	Fin height [inch]	Number of fins	Lead angle [deg]	Unit weight increase	Surface increase
Plain tube - Reference	3/8	0,0118	0,0000	0	0	100%	100%
Industry standard - Base line	3/8	0,0118	0,0079	60	18	120%	154%
High performance config.	3/8	0,0118	0,0079	85	30	123%	192%

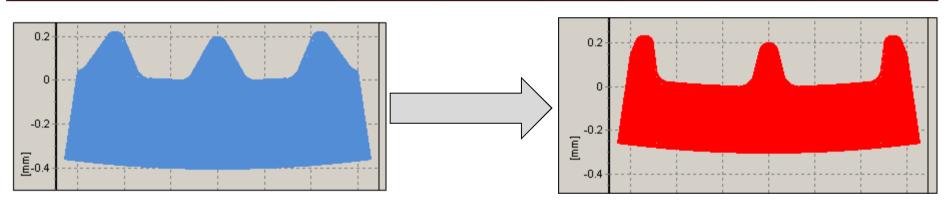
Heat transfer performance

Total pressure drop

Wieland Thermal Solutions® PROVIDING EFFICIENCY

200000

250000



Optimized tube design for reduced unit weight

Example cuprolite[®]: Light weight drop-in for 3/8" diameter IGTs

Description	Outside Diam.	Bottom wall	Fin height	Number	Lead angle	Apex angle	Unit weight
	[inch]	[inch]	[inch]	of fins	[deg]	[deg]	increase
Plain tube - Reference	3/8	0,0118	0,0000	0	0	0	100%
Industry standard - Base line	3/8	0,0118	0,0079	60	18	53	120%
Light weight - cuprolite	3/8	0,0118	0,0079	50	25	25	113%

- Ø Slimmer fin, decreased number of fins, higher lead angle
- Ø Comparable performance level
- $\boldsymbol{\varnothing}$ Fin height unchanged \rightarrow Drop-in

Result: Unit weight reduction of > 6%

slide 9

Wieland Thermal Solut

Wieland

Reduction of bottom wall thickness

Example: 3/8" x 0.0118" reduced to 0.011" bottom wall thickness

Description	Outside diam. [inch]	Bottom wall [inch]	Unit weight factor	
Base line	3/8	0,0118	100%	
Reduced wall	3/8	0,0110	93%	

Issues to be considered when reducing the wall thickness:

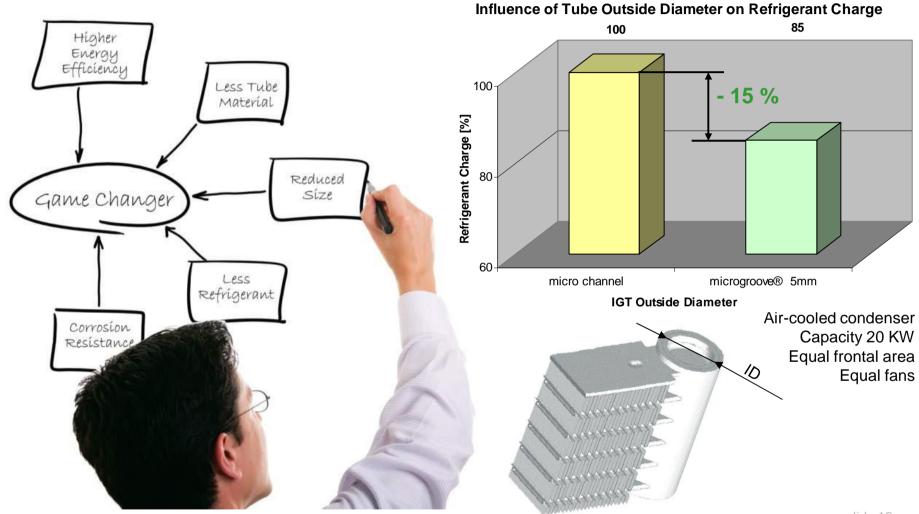
- Ø Tools for bending & expansion may have to be replaced
- Ø Pressure level requirements must be checked

Result: metal cost savings of ~7%

Miniaturization: Decreased outside diameter

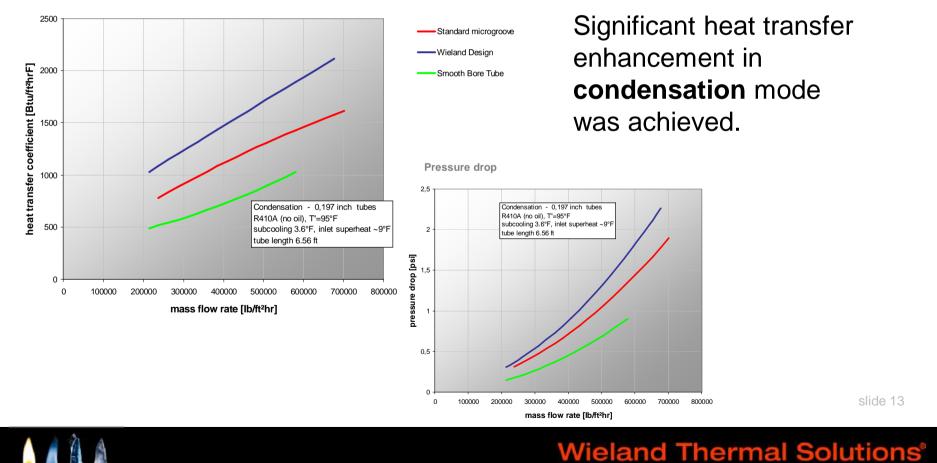
Example: Optimization of 5.7 ton condenser implementing microgroove technology

Description	Outside diameter	Bottom wall [inch]	Unit weight decrease	Required tube length	Material ratio	Refrigerant charge
Base line	3/8"	0,0118	100%	280 ft	100%	100%
microgroove	5 mm	0,0083	36%	420 ft	54%	44%


- Ø Cuts metal costs nearly into half
- Ø Improves energy efficiency
- Ø Significantly reduces heat exchanger weight
- Ø Maintains all advantages of copper tube based heat exchangers
- Ø Reduces refrigerant charge by >50%

microgroove[®] - Refrigerant Charge

slide 12

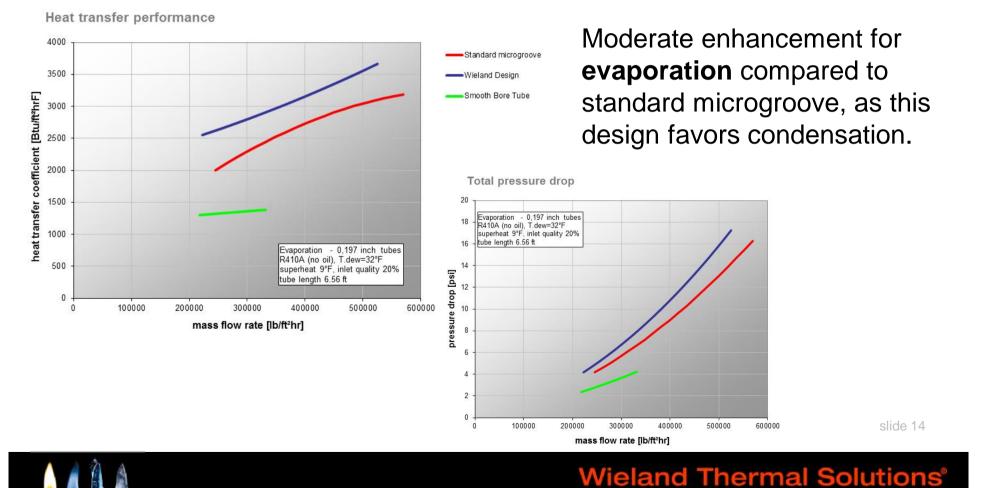


PROVIDING EFFICIENCY

Development of IGT on customer demand

Example: Development task: Design optimized microgroove fin pattern for condensation of R410A

Heat transfer performance



PROVIDING EFFICIENCY

Development of IGT on customer demand

Example: Development task: Design optimized microgroove fin pattern for condensation of R410A

Wieland Thermal Solutions®

PROVIDING EFFICIENCY

Thank you for your attention!

For questions: steffen.rieger@wieland.de