
# **Coil Evolution**

smaller diameter coil production



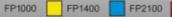
# Progression of Size

The design of more efficient coils lead to smaller diameters.



## Die Tonnage

### Burr OAK Tool Inc.


Global Experience...Local Solutions

|       |                                  |        |       |       |      |         |                          |                  |       |                       | ESTIMATED TONNAGES  |             |             |             |             |
|-------|----------------------------------|--------|-------|-------|------|---------|--------------------------|------------------|-------|-----------------------|---------------------|-------------|-------------|-------------|-------------|
| Die # | Die Specifications               | Length | Width | Draws | Farm | Enhance | Enhance<br>Cut<br>Length | Collar<br>Height | Allay | Material<br>Thickness | 1100<br>Temper<br>0 | 1100<br>H22 | 1100<br>H24 | 1100<br>H26 | 8006<br>H26 |
| 1     | 7mm x 49 rows x 4 progression    | 0.850  | 0.736 | 3     | R    | LAS     | 3.25                     | 0.050            | 1100  | 0.004                 | 42                  | 52          | 62          | 68          | 78          |
| 2     | 9.52mm x 48 rows x 4 progression | 1.000  | 0.866 | 4     | W    | LAW     | 4.06                     | 0.071            | 1100  | 0.004                 | 67                  | 82          | 97          | 108         | 124         |
| 3     | 7.94mm x 48 rows x 4 progression | 1.000  | 0.625 | 4     | F    | LOF     | 3.31                     | 0.063            | 1100  | 0.006                 | 83                  | 102         | 121         | 134         | 154         |
| 4     | 9.52mm x 48 rows x 4 progression | 1.000  | 0.866 | 4     | F    | LOF     | 3.25                     | 0.100            | 1100  | 0.006                 | 94                  | 116         | 137         | 152         | 175         |
| 5     | 7.94mm x 48 rows x 4 progression | 1.000  | 0.625 | 4     | F    | LOF     | 3.31                     | 0.063            | 1100  | 0.006                 | 83                  | 102         | 121         | 134         | 154         |
| 6     | 9.52mm x 48 rows x 4 progression | 1.000  | 0.750 | 4     | F, W | LOF     | 4.65                     | 0.100            | 1100  | 0.005                 | 83                  | 103         | 122         | 135         | 149         |
| 7     | 7mm x 48 rows x 4 progression    | 0.827  | 0.472 | 4     | s    | LAS     | 2.625                    | 0.125            | 1100  | 0.008                 | 86                  | 106         | 125         | 139         | 160         |
| 8     | 9.52mm x 48 rows x 4 progression | 1.000  | 0.866 | 5     | R    | LOF     | 5.2                      | 0.087            | 1200  | 0.0051                | 101                 | 125         | 148         | 164         | 187         |
| 9     | 9.52mm x 48 rows x 4 progression | 1,000  | 0.866 | 5     | R    | LOF     | 3,3                      | 0.071            | 1200  | 0.0045                | 79                  | 97          | 115         | 127         | 146         |
| 10    | 5mm x 70 rows x 4 progression    | 0.630  | 0.546 | 5     | F    | LAF     | 3.7                      | 0.056            | 1100  | 0.0038                | 73                  | 90          | 107         | 118         | 135         |
| 11    | 5mm x 70 rows x 6 progression    | 0.630  | 0.546 | 5     | F    | LAF     | 3.7                      | 0.056            | 1100  | 0.0038                | 110                 | 135         | 161         | 177         | 204         |
| 12    | 5mm x 70 rows x 8 progression    | 0.630  | 0.546 | 5     | F    | LAF     | 3.7                      | 0.056            | 1100  | 0.0038                | 146                 | 188         | 214         | 235         | 270         |
| 13    | 7mm x 72 rows x 3 progresssion   | 0.827  | 0.526 | 4     | F    | LOF     | 2.75                     | 0.071            | 3102  | 0.0045                | 62                  | 77          | 91          | 101         | 112         |
| 14    | 7mm x 72 rows x 4 progression    | 0.827  | 0.526 | 4     | F    | LOF     | 2.75                     | 0.071            | 3102  | 0.0045                | 86                  | 107         | 120         | 135         | 148         |
| 15    | 5mm x 84 rows x 4 progression    | 0.750  | 0.449 | 5     | F    | LOF     | 3.7                      | 0.063            | 1100  | 0.0038                | 99                  | 123         | 138         | 160         | 176         |
| 16    | 5mm x 84 rows x 6 progression    | 0.750  | 0.449 | 5     | F    | LOF     | 3.7                      | 0.063            | 1100  | 0.0038                | 148                 | 184         | 207         | 240         | 264         |









### Burr OAK Tool Inc.

Global Experience...Local Solutions

#### FP-1400

Dense hole pattern

Maximize collar height capability

Dynamically balanced for less vibration and thereby less maintenance

160 ton press for higher production in a given floor space

Thicker and high tensile materials are easier to manipulate with the 160 ton press



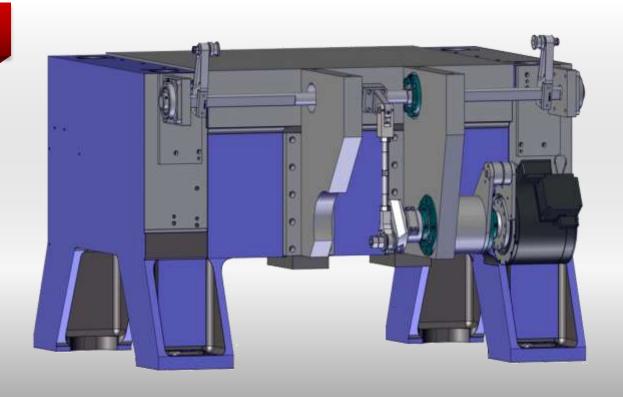
Global Experience...Local Solutions

#### Servo Feed

Servo feed requires less setup downtime as well as providing higher first time throughput

Easier access to the left side of the press and die

Centers and balances the forces on the feed shaft


Press operator can program the fin length from the touch screen on the control panel

Eliminates progression changer

No torsional twist

Reduced slivers

Improved out-board supports



## Fin Handeling



Global Experience...Local Solutions

### **Stacking Unit**

Locating Rails for the Dampening Bar.

Slide Lock on Rod Holder for Stacker Rods.

Rod Holders can now be moved by 1 person from one side of the stacker.

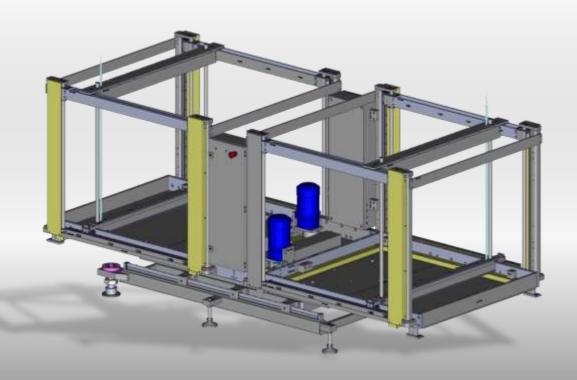
New Rod Holder Locating Design.

Stacker Table Top has been stiffened to prevent unwanted flexing.

Lifting ball screws are now guided by linear bearings.

All bearings have been upgraded to handle a higher load capacity.

Turntable bearing has been upgraded to a new design.


Pullback linear rails are now continuously supported.

Redesigned stacker Base.

Improvements were made to the Pullback frame to increase it rigidity.

New Larger more sturdy leveling feet.

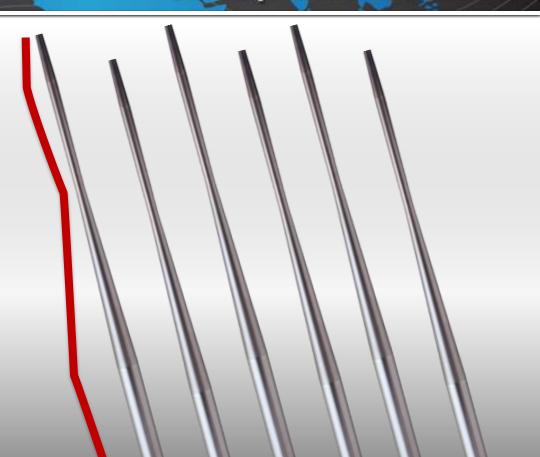
Dowels have been added to many components of the stacker to allow for easier removal and realignment of parts after performing maintenance/repairs.



## Fin Handeling



Global Experience...Local Solutions


#### **Double Delta Rods**

Stainless Steel Double Delta Stacker Rods

Durability

Surface finish

Tip geometry



## Fin Handeling

### Burr OAK Tool Inc.

#### **Suction Unit**

Sheet Tap Down

Reconfigured to improve airflow

Redesigned Blower (5Hp Motor to 3 ½ HP)

Quick change Positioning

Easy access to the cut off

Improved action of the doors

Accurately position the fins on the stacker rods



### Burr OAK Tool Inc.

Global Experience...Local Solutions

#### **ElectroStatic Lubricator**

Cleaner machine and environment

Safer working conditions

90% reduction in oil consumption reported by customer

Longer tooling life



### Burr OAK Tool Inc.

Global Experience...Local Solutions

#### **FP-400**

Increased tonnage

Lower initial cost

Improved die take-out capability

Improved performance through design enhancements



## **Tube Processing**

### Burr OAK Tool Inc.

Global Experience...Local Solutions

### **Triumph**

New Electric Bender

70% increase in productivity

More tubes/cycle, reduced changeover time, faster speeds

Reduced floor space

Reduced capital costs

Improved quality (SPC)

Stretch Straightening



**Tube Expansion** 

### Burr OAK Tool Inc.

Global Experience...Local Solutions

#### **Vertical Expander**

Support and align fragile expander rods

Alignment and retaining systems

Reduce tube end splits

New expansion technologies

