

Optimize to Exceed

Optimized Thermal

Advantages of Small Diameter Copper Tube-Fin Heat Exchangers

March 29th, 2017

Daniel Bacellar & Dennis Nasuta

7040 Virginia Manor Road, Beltsville MD 20705 | Tel: +1 866-485-8233 | www.optimizedthermalsystems.com

This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

March 29, 2017

1

Who are we?

CEEE JUVERSIT

- Pre-competitive
- Publishable R&D
- Shared by 30+ member companies
- Conducted by MS, PhD Students
- General purpose software

- Contracts with specific clients
- Conducted by full-time professional staff
- Customized Software

U Copper Alliance[™]

- **Mission:** Defend and grow markets for copper based on its superior technical performance and its contribution to a higher quality of life worldwide.
- **Members:** Copper mining and copper fabricating companies worldwide
- Main activities:
 - Partner with governments, regulators, and NGOs to implement sustainable development initiatives
 - Conduct and disseminate scientific studies related to copper in health and the environment
 - Develop and transfer new technologies supporting copper applications

Presenters:

Daniel Bacellar

Exclusive

License

- Ph.D., Mechanical Engineering
- University of Maryland (2016)
- Joined OTS in Dec. 2016
- Contact Info:
 <u>bacellar@optimizedthermalsystems.com</u>

Dennis Nasuta

- B.S., Mechanical Engineering
- University of Maryland (2011)
- Joined OTS in June 2011
- Contact Info: nasuta@optimizedthermalsystems.com

March 29, 2017

Optimized Thermal

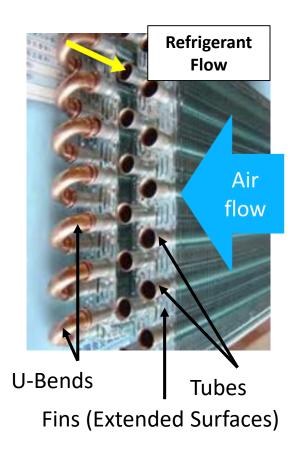
Contents

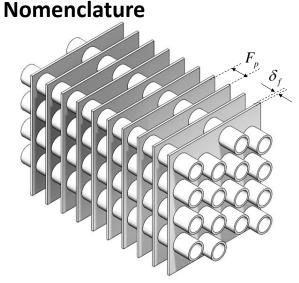
- Introduction
 - Background
 - Motivation
 - Objectives
- Fundamentals
 - First Order Analysis
 - Air flow thermal-hydraulic characteristics
 - Refrigerant flow thermal-hydraulic characteristics
- Heat Exchanger Design
 - Design Challenges
 - Correlations
 - Design tools: Introduction to CoilDesigner[®]
- Applications

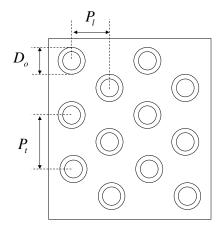
Introduction

Background

March 29, 2017


This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.


4


Tube-Fin Heat Exchanger

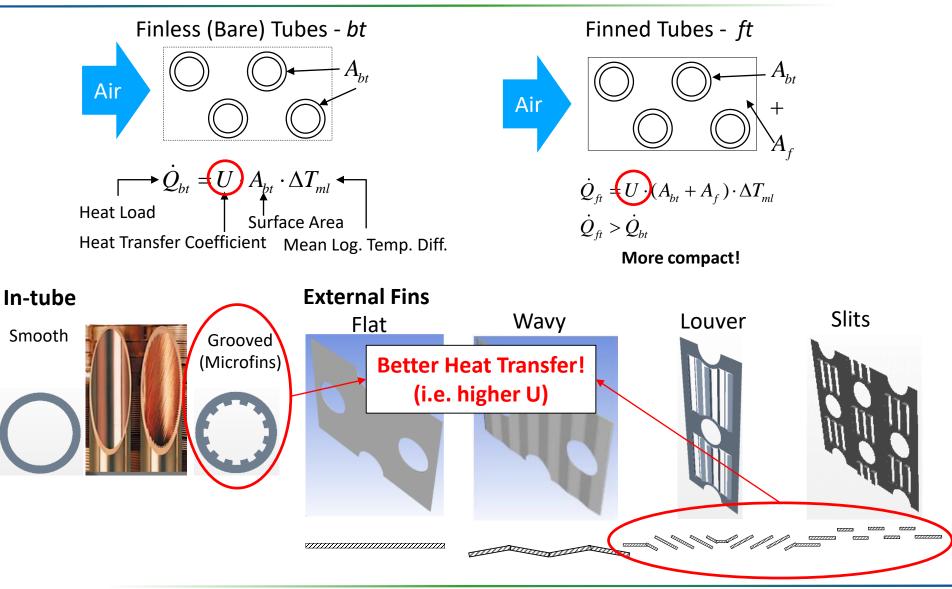
Parts and Working fluids

- D_o Outer diameter
- D_i Inner Diameter
- δ_w Wall thickness
- $\delta_{\rm f}$ Fin thickness
- P_t Transverse pitch
- (vertical spacing)

P_I – Longitudinal pitch
 (horizontal spacing)
 F_p – Fin pitch
 FPI – Fins Per Inch

Optimized Thermal

- **Copper Tubes**
- High thermal conductivity (~380W/m.K) → low wall thermal resistance
- Corrosion resistance
- Biofouling resistance
- Antimicrobial properties → reduce material build up, potentially fouling
- Soft metal; Pliable → ease of inner grooving
- Small diameter thinner walls: 1
 - Lower thermal resistance
 - Withstands higher pressures with thinner walls (e.g. CO2)



Fins & Enhancements

March 29, 2017

Optimized Thermal

Introduction

Motivation

March 29, 2017

Energy Efficiency

- Energy consumed in buildings
 - COP
 - Billing Cost
 - Primary energy use
 - CO₂ emissions
- Partial load

Cost

- Material
- Tooling
- Size / Weight

Environment and Safety

- Direct refrigerant emissions
- Footprints (e.g. CO₂, end-of-life equipment)
- Material (resources)

March 29, 2017

Optimized Thermal

Air-to-Fluid Heat Exchangers (HX)

- Worldwide push for more efficient HXs
 - Enhanced fins and tubes (internally) → limited
 - Size increase → Increase surface area while also increasing volume

TIME

- Larger → shipping and space issues, more expensive
- Heavier → shipping
- More refrigerant charge \rightarrow weight, GWP
- Partial load operations → oversized

March 29, 2017

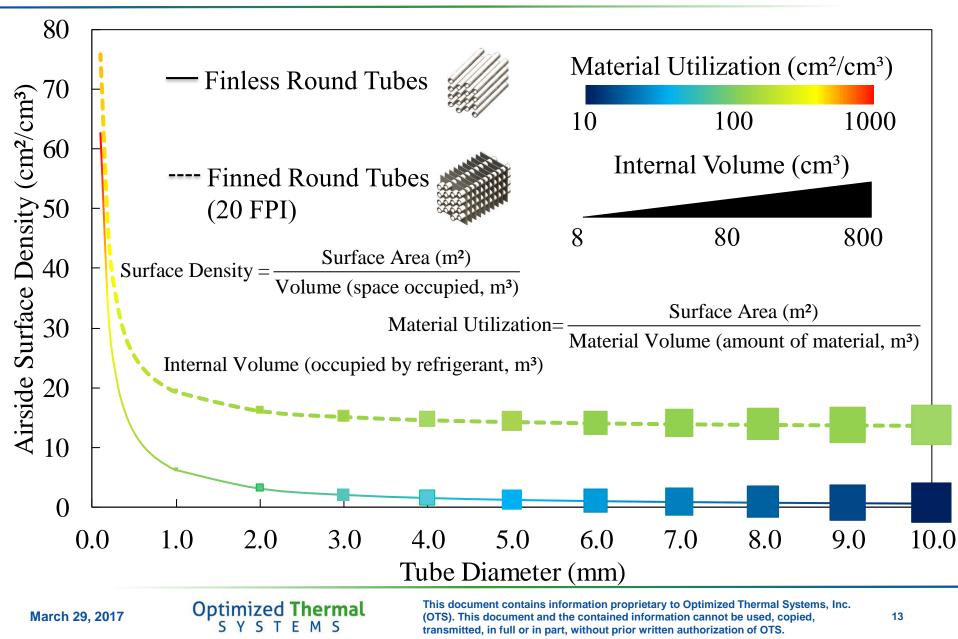
Optimized Thermal SYSTEMS

Objectives

- **1. Small diameter tubes fundamentals**
 - Performance → higher effectiveness, COPs
 - Overall size → weight, cost, space
 - Charge → environmental impact, weight
- 2. Heat exchanger design Challenges and Considerations
- 3. Accessible and inexpensive design tools
- 4. Present example cases where the three above objectives were successfully applied

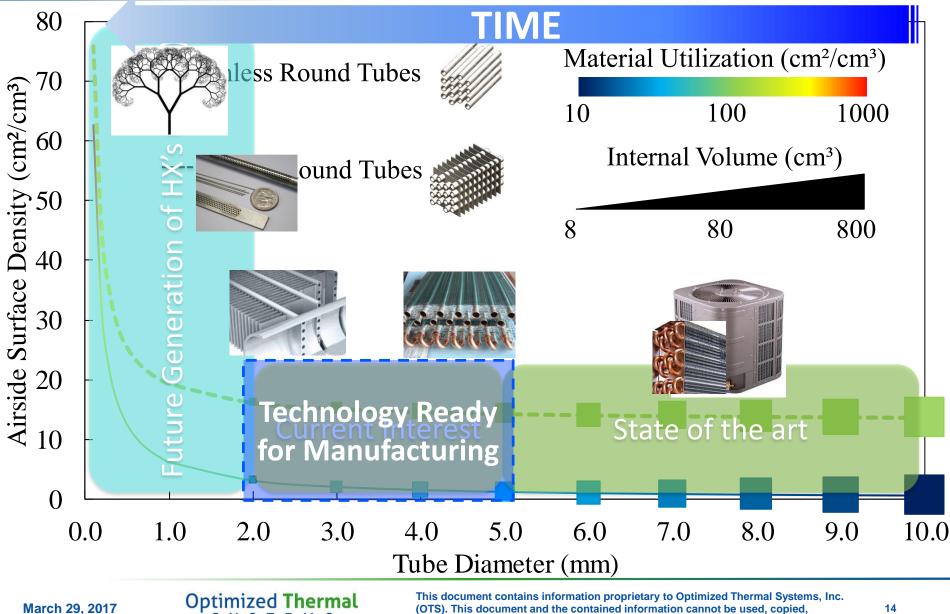
70% material cost reduction, 50%+ charge reduction, 60% pressure drop reduction

Fundamentals


First Order Analysis

March 29, 2017

First Order Analysis



First Order Analysis (cont'd)

STEMS

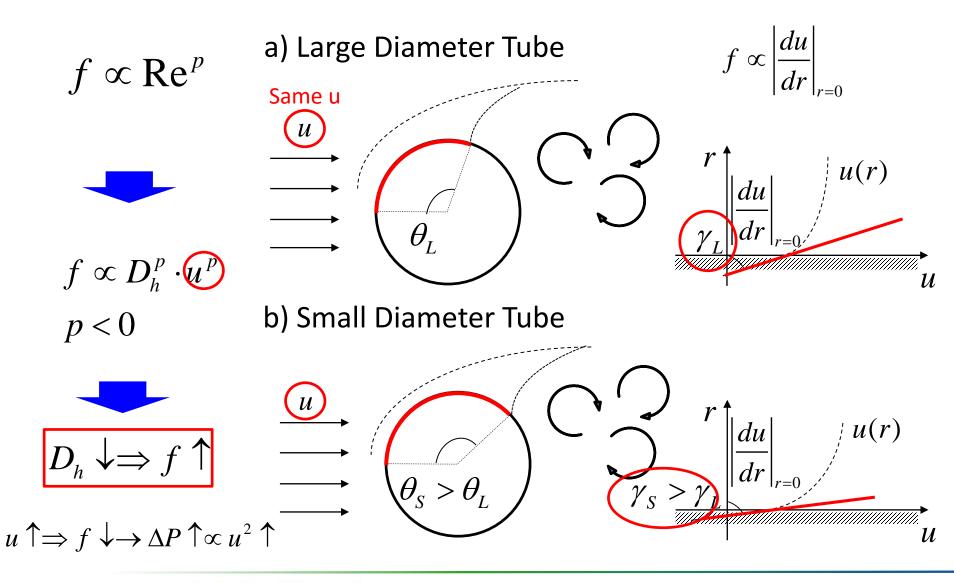
transmitted, in full or in part, without prior written authorization of OTS.

Fundamentals

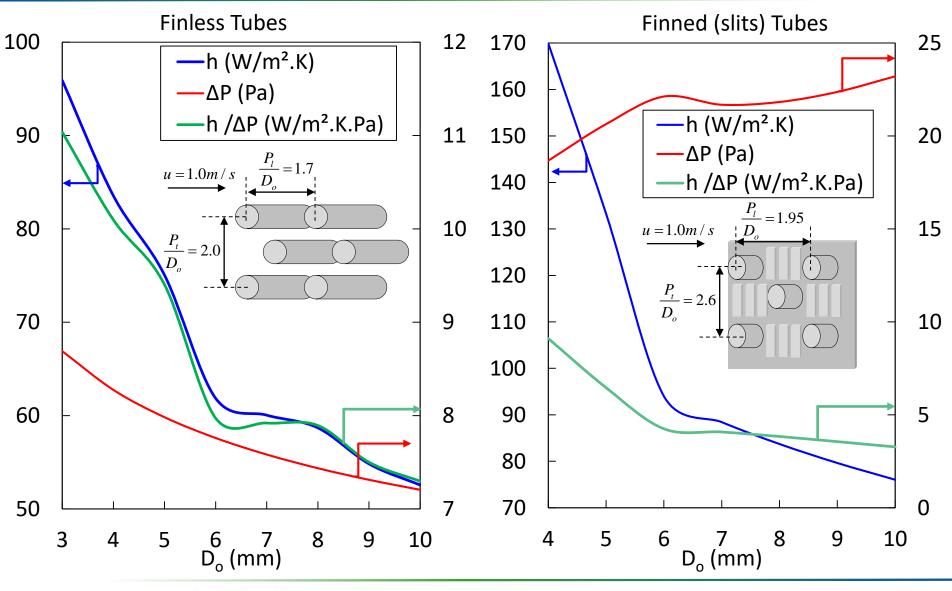

Air flow thermal-hydraulic performance

March 29, 2017

Optimized Thermal S Y S T E M S


Air Heat Transfer Coefficient (h) vs. D_h

Air Friction Factor (f) vs. D_h


March 29, 2017

Optimized Thermal SYSTEMS This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

17

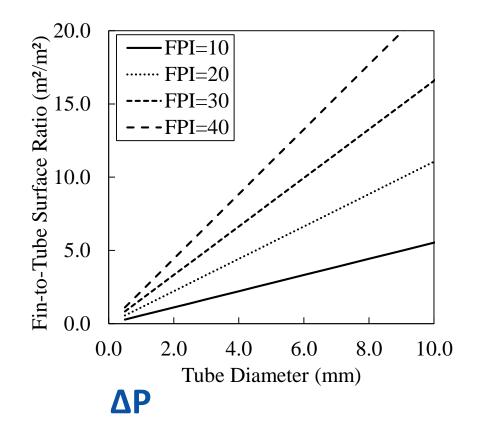
Example: Dry Air (1.0 atm, 300K)

March 29, 2017

Optimized Thermal

This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

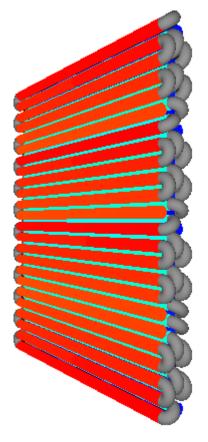
18


Discussion

• $D_{o} \downarrow \rightarrow$ Relative fin surface area \downarrow

- Impact (positive) on ΔP
- Less contribution to heat transfer
- Airflow passage depth

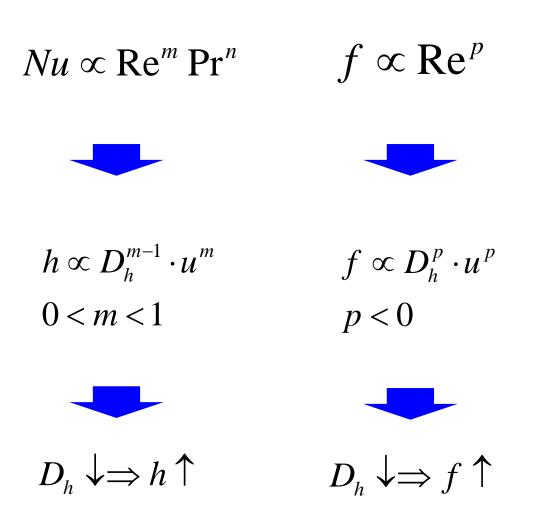
• Friction resistance



(surface characteristic) vs. (HX characteristic)

March 29, 2017

Optimized Thermal


Fundamentals

Refrigerant flow thermal-hydraulic performance

Optimized Thermal S Y S T E M S

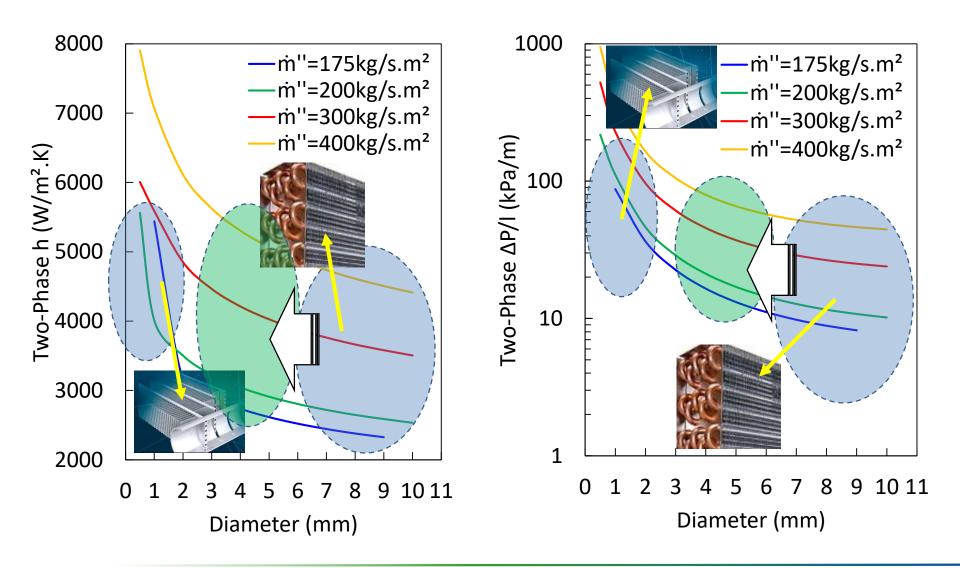
Microchannel with headers

- Small D_h:
 - h个

- Compactness↑
- Multiple distribution tubes
 - ṁ"↓
 - Refrigerant path length \downarrow , • $\Lambda' P$
 - Flow maldistribution
 - Header ΔP

Tube-fin with serpentine circuits

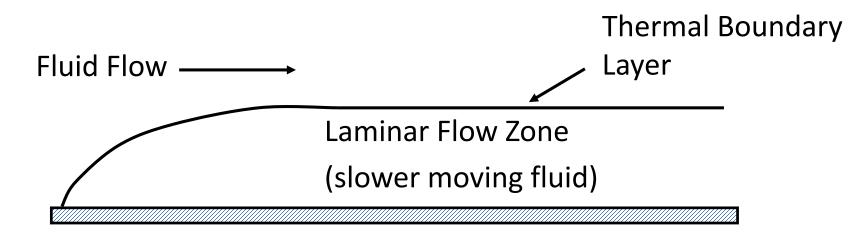
- Large D_h:
 - h↓
 - Compactness ↓
- Few circuits


 - Refrigerant path length 个
 - ΔP

Optimized Thermal SYSTEMS

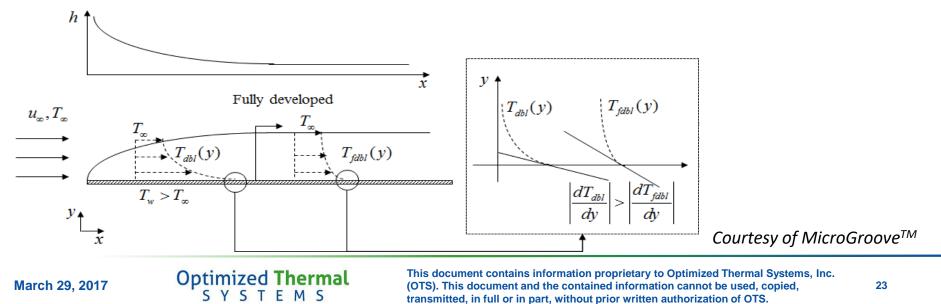
March 29, 2017

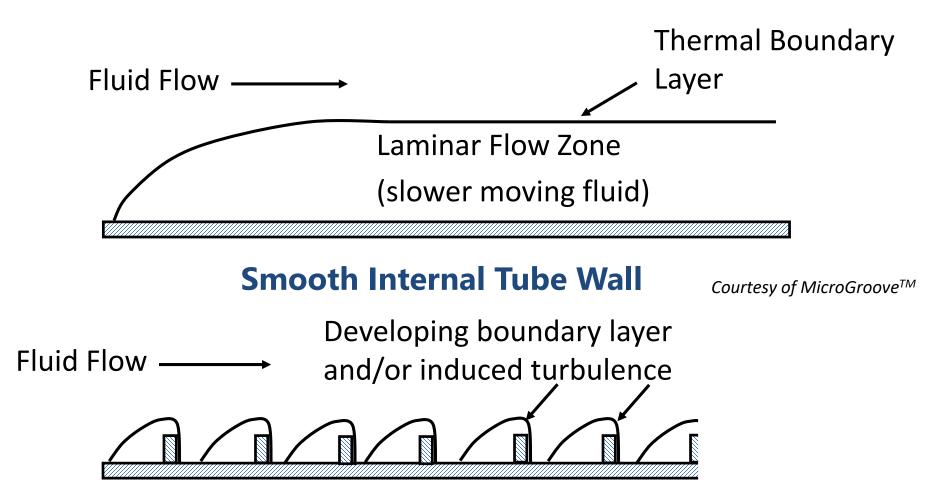
Example: Two-Phase R410A (2.7MPa)


March 29, 2017

Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

Optimized Thermal

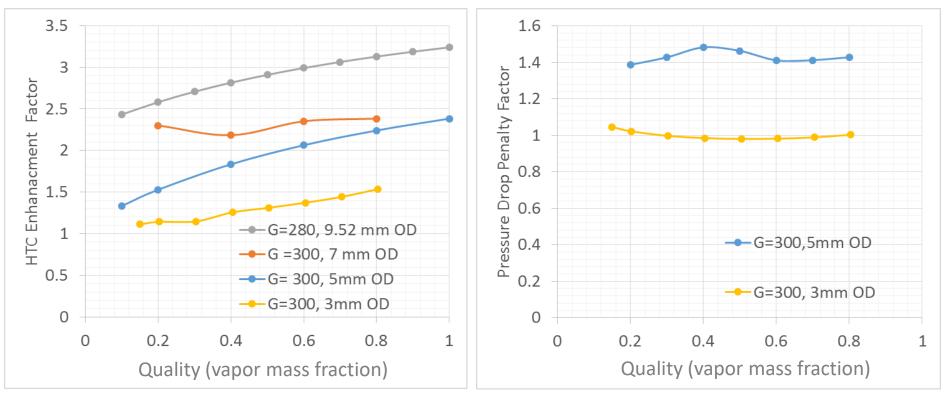

Internally Enhanced Tubes


Smooth Internal Tube Wall

Courtesy of MicroGroove[™]

Internally Enhanced Tubes (cont'd)

MicroGroove Tube


Courtesy of MicroGroove™

March 29, 2017

Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

24

Internally Enhanced Tubes (cont'd)

G= Mass flux (kg/s.m²)

- Quality $\downarrow \rightarrow$ HTC enhancement \downarrow
- $D_o \downarrow \rightarrow$ HTC enhancement \downarrow

- ΔP Penalty Factor somewhat constant
- $D_o \downarrow \rightarrow \Delta P$ Penalty Factor \downarrow

March 29, 2017

Optimized Thermal SYSTEMS

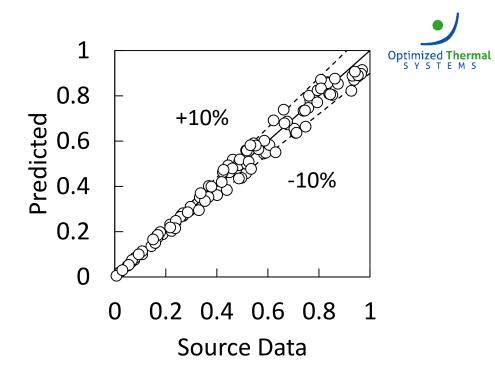
This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

Optimized Thermal S Y S T E M S

Summary – Fundamentals

- First Order Analysis
 - More compact surfaces (more area per volume)
 - Less material consumption for same area
 - Smaller internal volume (less charge)
- Airside Thermal Hydraulic Characteristics
 - Higher Heat Transfer Coefficients at same velocities and Reynolds
- Refrigerant Side Thermal Hydraulic Characteristics
 - Higher Heat Transfer
 - Inner grooves enhance heat transfer regardless the tube diameter
- Challenges & Disadvantages
 - Higher friction factor \rightarrow design changes to reduce pressure drop
 - Inner grooves enhancement reduce with tube diameter

Heat Exchanger Design

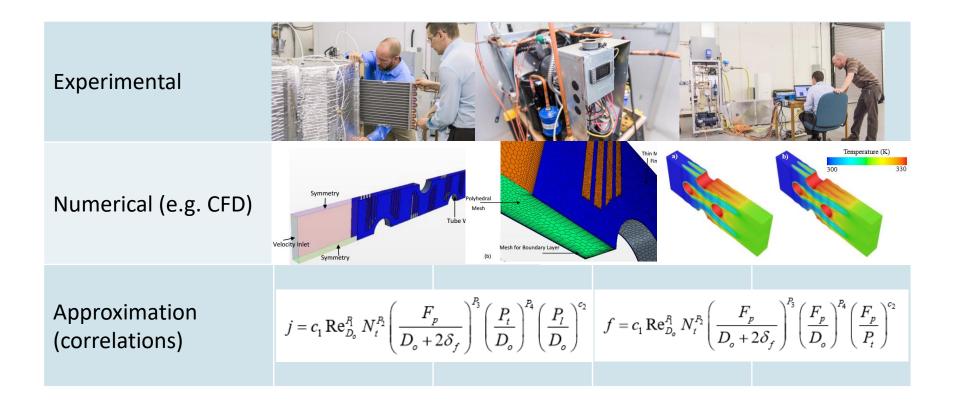


Design Considerations

- Airside friction resistance
 - Face area → reduce velocity (although typically undesirable)
 - Tube pitches → increase minimum free flow area
 - Fin density
- Refrigerant pressure drop
 - More circuits → reduce mass flux and flow length
 - Shorter tubes → reduce flow length
- Manufacturing (Webinar #02)
 - Fin collars → minimum fin density
 - Tube expansion
 - Fin dies, types, material, thickness
 - Number of tubes → Number of joints

Heat Exchanger Design

Correlations


March 29, 2017

Importance of Correlations

Three methods to assess performance:

March 29, 2017

Optimized Thermal SYSTEMS

Importance of Correlations (cont'd)

Method	Accuracy	Engineering Cost	Capital Cost	Computational Cost
Experimental	Very High	High	Very High	Low
Numerical (e.g. CFD)	ımerical (e.g. CFD) High		High	Very High
Approximation (correlations)	Medium-High	Low	Low	Very Low

Most cost-effective in assessing performance!

March	29	2017
Walti	23,	2017

Optimized Thermal SYSTEMS

Literature Survey - Empirical

Author	Year	Fin type	Tube arrangement	Applicability	Regression Uncertainty
Grimison	1937	No fins	Inline/ Staggered	Re>2000 (D _h range unknown) 1.25 ≤ Pt ≤ 3.0 D _o 0.6 ≤ Pl ≤ 3.0 D _o 3 ≤ N ≤ 9	N/A
Žukauskas	1972	No fins	Inline/ Staggered	1≤Re≤10 ⁶ (D _h range unknown) 1.25 ≤ Pl, Pt ≤ 3.0 Do	N/A
McQuiston	1978	Plain	Staggered	9.675≤ D _o ≤ 16.13mm; 1.0 ≤ u ≤ 4m/s 25.4mm ≤ Pl, Pt ≤ 50.8mm	15%
Gray	1986	Plain	Staggered	D _o >9.96mm, 500≤Re≤24000 N ≤ 4, 1.7 ≤ Pl, Pt ≤ 2.6 D _o	7.3% (HT) <i>,</i> 13% (F)
Webb	1990	Plain	Staggered	D _c ≥ 7 95mm, 2 ≤ N ≤ 6 1 .5 : Pt/Pl ≤ ⊾ ^7	5%
Kim et al.	1999	Plain	Staggered	7.3 ≤ D₀ < 19.3mm	20%
Wang et al.	2001	Plain	Staggered	6	15%
Webb	1990	Wavy	Staggered	D _c ≥ 7.95mm, N = 3 Pt/Pl = 1.15	5%
Kim et al.	1997	Wavy	Inline/ Staggered	D _o = 10.46, 500≤Re≤9000 1 ≤ N ≤ 8, 1.16 ≤ Pt/Pl ≤ 1.33	10% (HT), 15% (F)
Wang et al.	2002	Wavy	Staggered	7.66 ≤ D _c ≤ 16.85mm, 12 ≤ Pl ≤ 33mm 1 ≤ N ≤ 6; 21 ≤ Pt ≤ 38mm	15%
Wang et al.	1999	Louver	Staggered	6.93 ≤ D _c ≤ 10.4, 17.7 ≤ Pt ≤ 25.4mm 1 ≤ N ≤ 6, 12.7 ≤ Pl ≤ 19.05mm	15%
Wang et al.	1999	Slit	Staggered	D _c = 10.34mm, 1 ≤ N ≤ 6	10%

March 29, 2017

Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

32

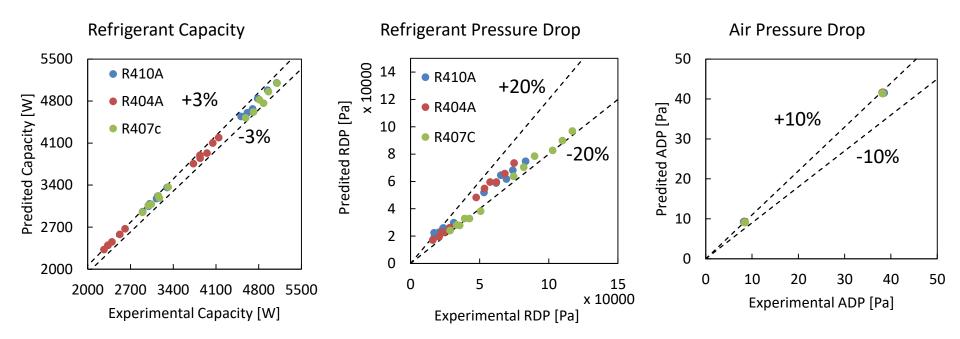
Literature Survey – CFD-based

Author	Fin type	Tube arrangement	Application range	Accuracy (staggered only)
Bacellar et al. (2015)	Finless	Staggered	0.5mm≤Do≤2.0mm 2≤N≤40	j : 15%(92.9% of data) f: 15% (88.1% of data)
Bacellar et al. (2016)	Finless	In-line	0.5mm≤Do≤2.0mm 2≤N≤40	j : 20%(80% of data) f: 20%(80% of data)
Bacellar et al. (2014)	Finless	Staggered	2.0mm≤Do≤5.0mm 2≤N≤20	j : 10%(98.5% of data) f: 10%(91.9% of data)
Bacellar et al. (2014)	Flat	Staggered	2.0mm≤Do≤5.0mm 2≤N≤20	j : 15%(82.1% of data) f: 15% (82.3% of data)
Bacellar et al. (2016)	Wavy Herringbone	Staggered	2.0mm≤Do≤5.0mm 2≤N≤20	Nu: 15%(96% of data) Cf: 15%(94% of data)
Bacellar et al. (2015)	Wavy Smooth	Staggered	2.0mm≤Dc≤5.0mm 2≤N≤10	j : 20%(64% of data) f: 20% (66% of data)
Bacellar et al. (2016)	Wavy Smooth	Staggered	2.0mm≤Do≤5.0mm 2≤N≤20	Nu: 15%(94% of data) Cf: 15%(93% of data)
Sarpotdar et al. (2016)	Slit	Staggered	3.0mm≤Do≤5.0mm 2≤N≤6	h: 15%(99% of data) ΔΡ: 15%(93% of data)
Sarpotdar et al. (2016)	Louver	Staggered	3.0mm≤Do≤5.0mm 2≤N≤8	h: 15%(99% of data) ΔΡ: 15%(94% of data)

March 29, 2017

Optimized Thermal SYSTEMS

Refrigerant Correlations – Internally Enhanced Tubes


Author	Phase	Refrigerant	Application
Shlager et al. (1989)	Two-Phase (horiz.)	Any	-
Ravigururajan & Bergles (1996)	Single Phase	Any	Re = 5000-60,000
Koyama & Yonemoto (2006)	Condensation (horiz.)	Any	Mass Flux: 100-500 kg/m2s
Koyama & Yonemoto (2006)	Condensation (horiz.)	CO2	Mass Flux: 100-500 kg/m2s
Shah (2016)	Condensation (horiz.)	Water, R-11, R-12, R-22, R-32, R-113, R-123, R-125, R-134a, R- 142b, R-404A, R-410A, R-502, R-507, isobutane, propylene, propane, benzene, ethanol, methanol, toluene, Dowtherm 209, DME, CO2	Tube diameter, mm (in.) 2 to 49 (0.079 to 1.93)
Wu et al. (2013)	Evaporation	Any	Nominal diameter: 2.1- 14.8mm
Son & Oh (2012)	Condensation (horiz.)	CO2	ID = 4.6 - 4.95mm;

March 29, 2017

Optimized Thermal SYSTEMS

Correlation Validation

- Using new, tuned, louver fin correlation Sarpotdar et al. (2016), CoilDesigner[®] predictions match experimental results very closely
- Koyama & Yonemoto (2006) correlation shows acceptable refrigerant-side performance

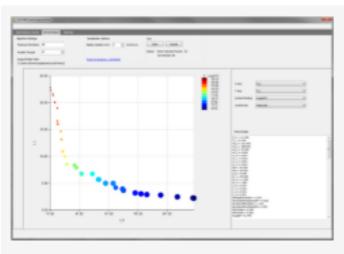
Tuning Correlations

- Experimental data for correlation Verification & Validation
- Opportunity for collaboration
 - Cross-validation with data from multiple sources
 - Large data base
 - Publications
 - Access

Heat Exchanger Design

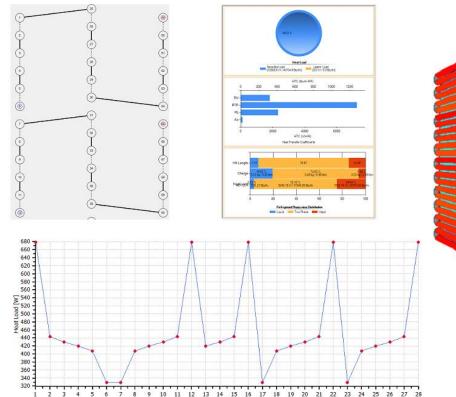
March 29, 2017

Optimized Thermal S Y S T E M S


This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

37

CoilDesigner® - Webinar #03



CoilDesigner[®] is a highly customizable software tool that designs, simulates and optimizes the performance of a variety of heat exchangers. This unique tool helps to shorten product development time frames and associated costs. With one integrated tool, you can design your product, simulate its performance, and optimize it for multiple objectives (e.g. cost, efficiency, and power consumption).

Optimization and Parametric Analysis!

March 29, 2017

Tubes

Optimized Thermal SYSTEMS

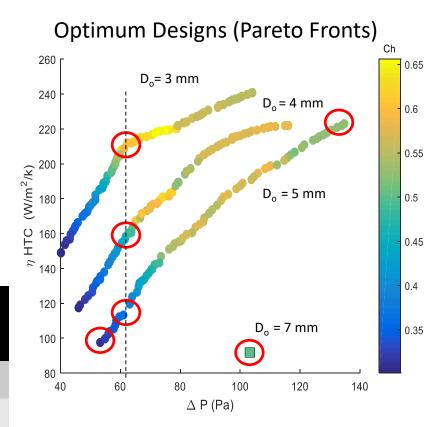
Applications

March 29, 2017

This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

39

Case Studies


- Study I: Airside Performance Optimization
 - New correlations
 - Maximize heat transfer coefficient and minimize pressure drop
- Study II: Split Condenser Optimization
 - New correlations + CoilDesigner[®]
 - Minimize air pressure drop, raw material cost and refrigerant charge
- Study III: Window AC Condenser
 - New Correlations + CoilDesigner[®]
 - Improve system's performance, reduce cost & refrigerant charge

Study I: Airside Performance Optimization

- New correlations reveal performance potential of smaller diameter tube heat exchangers
- Figure: 3, 4, 5 mm slit fin performance (shaded by slit height)
- Sample fin designs:

Metric	7 mm	5 mm (max HTC)	5 mm (min ΔP)	5 mm sample	4 mm sample	3 mm sample
D _o (mm)	7	5	5	5	4	3
u (m/s)	2.875	2.875	2.875	2.875	2.875	2.875
HTC (W/m ² K)	92.4	222.8	97.3	126.5	160.5	214.3
ΔP (Pa)	113.4	134.8	53.2	65.4	63.53	65.5

Sarpotdar et al., CFD Based Comparison of Slit Fin and Louver Fin Performance for Small Diameter (3mm to 5 mm) Heat Exchangers, 16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016

March 29, 2017


Optimized Thermal SYSTEMS

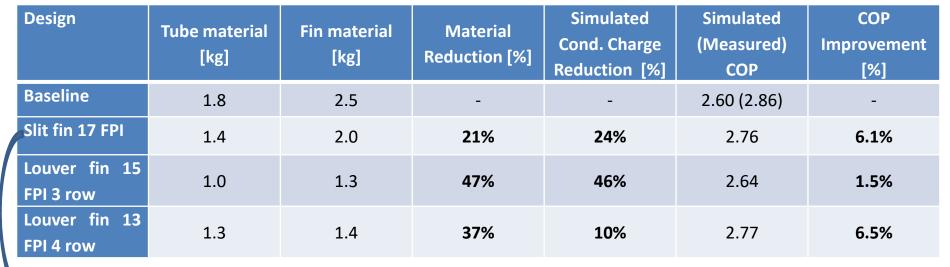
Study II: Split Condenser Optimization

Optimized Thermal

- Identify optimal drop-in replacement condensers for room AC
- Constraints: performance should be equivalent to the baseline
- Objectives: minimize air-side pressure drop (improve efficiency), material consumption, and refrigerant charge

March 29, 2017

Optimized Thermal S Y S T E M S


Study III: Window AC Condenser

FRIEDRICH

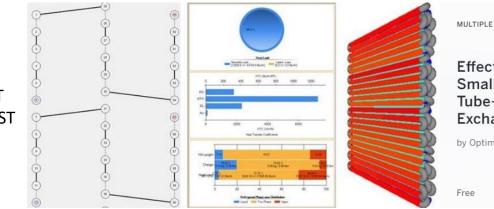
- Improve system performance
- Reduce cost
- Reduce refrigerant charge
- Slit and louver fin designs considered, working with a manufacturing partner

Experiment: Louver fin coil achieves 10% system charge reduction and 4% COP increase
 while reducing cost by approximately 40%

Take Home Messages

- Small diameters
 - Compact, less material & less charge
 - Better heat transfer, higher friction
- Copper tubes
 - Low thermal resistance
 - Withstands high pressures with less material (small diameter)
 - Corrosion & biofouling resistance
 - Ease of inner grooving
- Design tools
 - Correlations are the most cost-effective way of assessing performance
 - Need for experimental data for tuning/modifying these tools
- Case studies
 - 3.0mm ~70% higher heat transfer than 5.0mm at same air pressure drop
 - ~60% air pressure drop reduction, ~75% material reduction, ~90% less charge
 - Real system resulted in ~10% less charge (system not heat exchanger), ~4% more COP

Coming Next


Registration: http://www.microgroove.net/ots-ica-educational-outreach

Webinar #03

When:

March 29, 2017

Wednesday May 24th, 2017 Morning Session: 8:00AM EST Afternoon Session: 4:00PM EST

Optimized Thermal STEMS

This document contains information proprietary to Optimized Thermal Systems, Inc. (OTS). This document and the contained information cannot be used, copied, transmitted, in full or in part, without prior written authorization of OTS.

MULTIPLE DATES

Effective Design of Small Diameter Copper **Tube-Fin Heat** Exchangers

by Optimized Thermal Systems, Inc.

THANK YOU!

Contact Information:

Daniel Bacellar

- Ph.D., Mechanical Engineering
- University of Maryland (2016)
- Joined OTS in Dec. 2016
- Contact Info: <u>bacellar@optimizedthermalsystems.com</u>

Dennis Nasuta

- B.S., Mechanical Engineering
- University of Maryland (2011)
- Joined OTS in June 2011
- Contact Info: nasuta@optimizedthermalsystems.com

March 29, 2017

Optimized Thermal