

Optimize to Exceed

Effective Design of Small-Diameter Copper Tube-Fin Heat Exchangers May 24th, 2017

Dennis Nasuta & Daniel Bacellar

7040 Virginia Manor Road, Beltsville MD 20705 | Tel: +1 866-485-8233 | www.optimizedthermalsystems.com

Optimized Thermal S Y S T E M S

May 24, 2017

This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

Speakers

2

Dennis Nasuta

- M.S., Mechanical Engineering University of Maryland, College Park
- Joined OTS 2011

Daniel Bacellar

- Ph.D., Mechanical Engineering University of Maryland, College Park
- Joined OTS 2016

3

Serving the HVAC&R industry through cutting edge research, state-of-the-art software, and performance measurement and verification of new technologies that can reduce energy consumption and address growing environmental concerns.

U Copper Alliance™

Defend and grow markets for copper based on its superior technical performance and its contribution to a higher quality of life worldwide. Members include copper mining and fabricating companies.

- Introduction
 - Motivation
 - Background
- Heat Exchanger Modeling
 - Fundamentals
 - Introduction to CoilDesigner®
 - Demonstration: modeling a 5 mm heat exchanger
- Applications

May 24, 2017

- Validation against experimental data
- Example of 5 mm design
- Conclusions and Q&A

Introduction

May 24, 2017

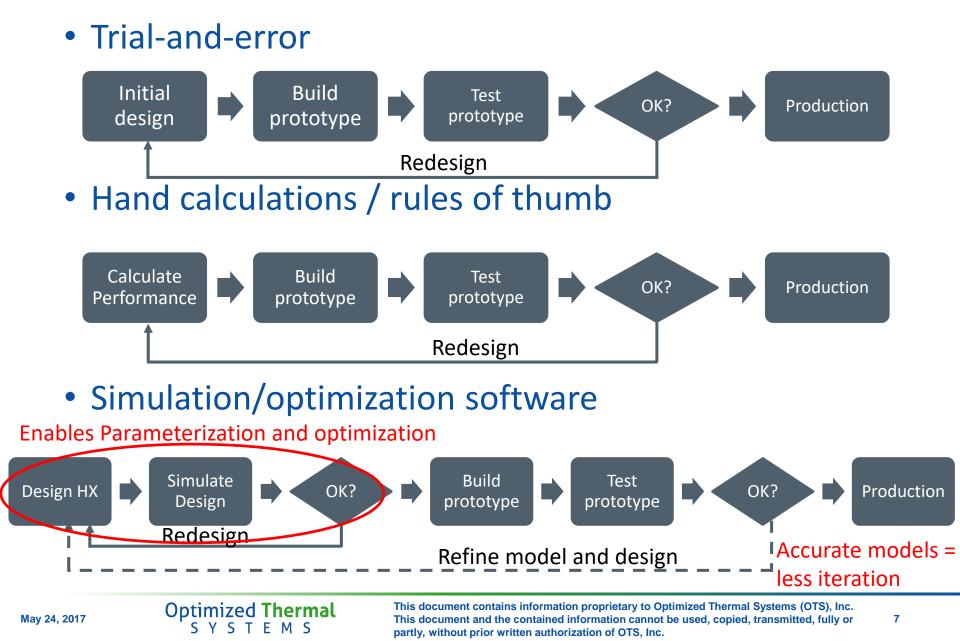
Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

Why Does Heat Exchanger Design Matter?

Energy Efficiency

- Energy consumed in buildings
 - COP
 - Billing Cost
 - Primary energy use
 - CO₂ emissions
- Partial load

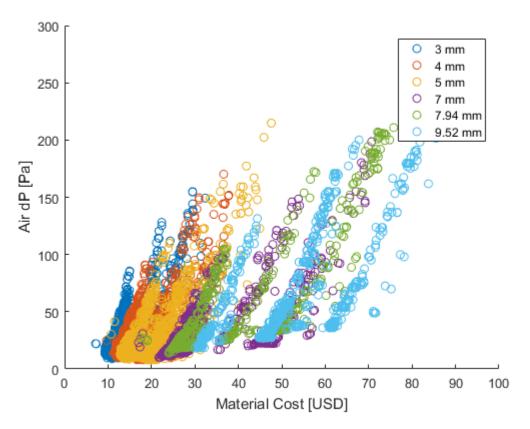
• Size / Weight


Environment and Safety

- Direct refrigerant emissions
- Footprints (e.g. CO₂, end-of-life equipment)

Optimized Thermal

Heat Exchanger Design Techniques



How Many Ways Are There To Design a Tube-Fin Heat Exchanger? At Least:

- 6 Tube diameters (5 mm, 1/4", 7 mm, 5/16", 3/8", 1/2")
- 6 fin types (flat, wavy-smooth, wavy-herringbone, slit, louver, wavy-louver)
- 10 Fin densities
- 10 tube lengths
- 10 vertical pitches
- 10 horizontal pitches
- 10 circuitries
- •••

May 24, 2017

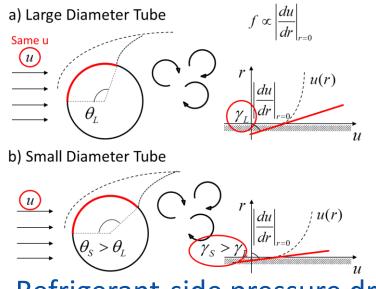
Already 3.6 million designs!

Optimized Thermal S Y S T E M S

Fundamentals

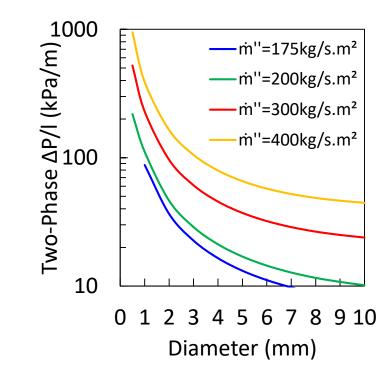
Heat exchanger modeling

May 24, 2017


Optimized Thermal S Y S T E M S

Small Diameter Design Considerations

Accurate modeling tools


Air-side pressure drop

Refrigerant-side pressure drop

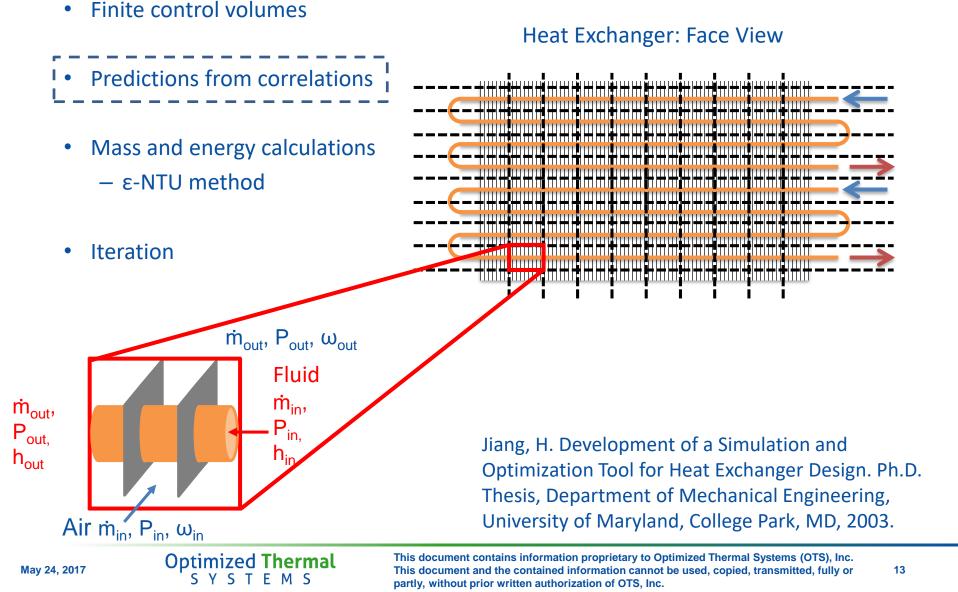
SYSTEMS

Results Facults - Tabbed View Pic	ts 30 View Tube End Pi	ota				General
Denuite Cananal	W. Transpoorteou					Project File Name:
						C Sters Dennis Vocuments
	Value Units	Alt, Value Alt, Units	STVAUE STUNE	s Eng. Velve Eng. Units		9CA_SnalDane
Heat Loads						Descriptions
Total Heat Load	4901,6615 W		4901,5615 W	16725.1672 Btahr		
Sensible Heat Load	4911.5615 W		4901,5515 W	16725.1572 Bhahr		
Latert Heat Load	0.0000 W		1,000 W	6,000 Blahr	100.0 N	
Servible Heat Tatlo	1.0000 W		1.000 W	1,000 06444	NVV N	Update Description
Ref. Lipid Hestiad	-481,8631 W		-485,8625 W	-1644.5268 #tubr		Common Tanks
Ref. Two-phase Heatland	-4192,4947 W		-4192,4947 W	-14305.3891 884%r		Dill farameters.
Ref. Vapor Heatland	-227,2005 W		-227,2005 W	-775,2512 Btahr		Specify coll dimensi
Def Jibs Heatings Gen	4911.5615 W		4901,5615 W	16725.1672 Btahr		carrelations.
				and and and an	HeatLoad	Specify triat at an Specify triat at an
Charge/Condensate					Senable Load [#[01719/1572528whv] [0019/009whv]	Fluid Properties C
Refrigerant Charge	0.0862 kg		6.0062 kg	6.2901 Ben	[MM11 M1 M202 BM4] [MM14 COBM4]	
Refrigerant Liquid Charge	0.0322 kg		4.4322 kg	6.8713 Bro		Tube Connections
Refrigerant Two Phase Charge	0.0529 kp		8.8529 kg	6.1167 bn	HTC (Bullet #F)	Choose a Tube to
Refrigerent Vapor-Charge	0.0011 kg		9,0011 kg	6,8923 bm	0 200 400 600 800 1000 1200	Its connected tube
Condensate	0.0000 kg/s		8.8000 kg/s	6.0000 lbm/s		REMARK AT U.S.
					RV -	
tion flates					RTP	Available Tabes
Total Refrigerant Plave	0.0280 kg/s		4.8288 kg/s	6.8417 (bm/s		7.84-2
Air Mass Flow Rate	5.5189 kg/s		1.1189 kg/s	2.4667 Ibrils	R.	1.8e-3 1.8e-4
Air Flow Rate	0.9700 m³/e		0.9700 m3/a	34,2552 ft3/s	Ar-	Tube 5
Standard Air Flow Rate	0.9370 m//a		4.8370 m³/a	33.0987 ft/w		Tuber5 Tuber4 Tuber7
					0 2000 4000 6000	Tube 8 Tube 9
Pressure Drops					HTC (MMR)	
HX.Air Pressure Drop	37.6598 Pa	0.15119 in:H20	37.6598 Pa	0.0055 (p.si	Heat Transfer Coefficients	7.8e-11 7.8e-12
System Air-Side Resistance	0.0000 Pa	0.0 in H20	8.0000 Pa	6.8000 psi		
Total Air Side Precoure Drop	27.6598 Pa	0.15119 in H20	27,6598 Pa	6.0055 pei		Tube-14 Tube-15
Refrigerant Pressure Drop	69436.6018 Pa		69436.6018 Pa	\$0.0799 pai		7.8e-35 7.6e-17
Refrigerent Set. T Drop	L0879 K		1.0679 ×	1.8582 **	HX.Langth- 1583 80.83 38	
Outlet Canditions						Tube-19 Tube-20
Avg. Air Outlet Temperature	305.2697 K		345.2687 K	89.8154 19	Charge - 003 kg / 007 kp 005 kg / 012 km	1.8e-21 1.8e-22 ¥
Avg. Air Optiet Wethulb Temperature	293,7229 K		293,7229 K	69,0510 15		1.6e-22 *
Avg. Air Oublet lisebuib temperature Avg. Air för	291,7239 K		24,5458 %	24,0658 %	Hort, John Charles and During and State and St	Chould Command
Avo, Refrigerent Outlet Pressure	2001215.5942 Pa		2004205.3982 Pa	305,7004 pail		Lines II Command
Avo, Refrigerent Oxfet Temperature	308,0533 K		368,8532 K	94,5290 77		
Avg. Rehigerant Outlet Quality	-0.1145		-0.1149	-0.3146	0 20 40 60 80 100	
Avp. Refrigerant Sat. Delta	-5.0425 K		-5.0415 K	-16.2747 19	Refrietrat Place via Datibution	

Small Diameter Design Considerations

• Refrigerant Choice

Material Cost



May 24, 2017

Optimized Thermal S Y S T E M S

Modeling Fundamentals

Optimized Thermal

Demonstration

Modeling in CoilDesigner®

May 24, 2017

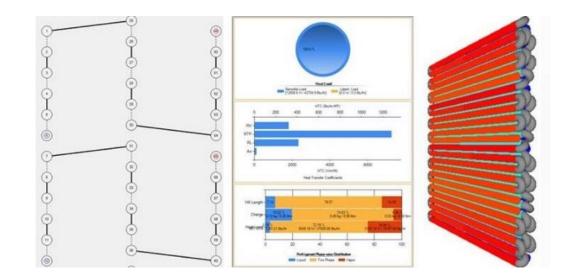
Optimized Thermal S Y S T E M S

Example HX – Geometry Details

5 mm Condenser with Louver Fins

Parameter	Dimension
Tube configuration	1x24
Finned length	547 mm
Tube OD	5 mm
Tube pattern	19.05 x 16.5 mm
Fin thickness	0.1 mm
FPI	15
	and the second second

Optimized Thermal S Y S T E M S


Example HX – Operating Conditions

19

R-410A Testing

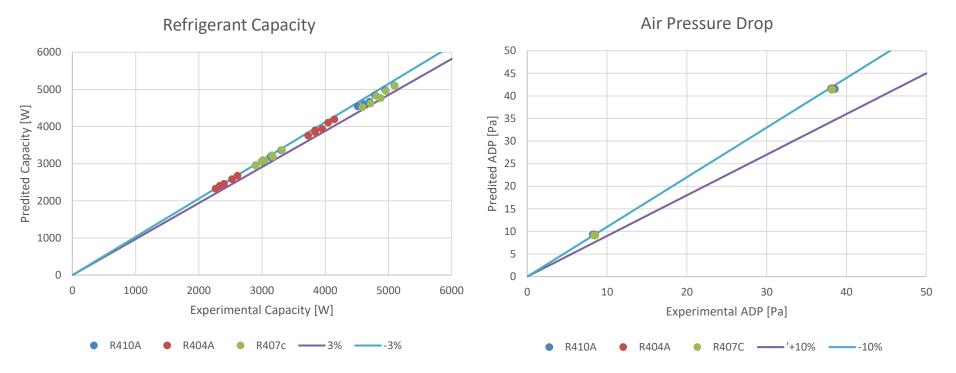
Tain	RH in	Air flowrate	Ref P in	Ref T in	Ref mdot
К	%	m3/s	Ра	К	kg/s
301	45	0.97	2,735,642	322	0.028

Input into CoilDesigner[®]....

Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

May 24, 2017

Example HX – Experimental Testing


Optimized Thermal S Y S T E M S

May 24, 2017

Example HX – Experimental Results

ADP	Trefout	Prefout	RDP	Taout	Rhaout	Ref capacity	Subcooling coil out
Ра	K	Ра	Ра	K	%	W	К
38.4	310	2,652,371	83271	305	21	4702	6.5

May 24, 2017

Optimized Thermal

This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

Applications

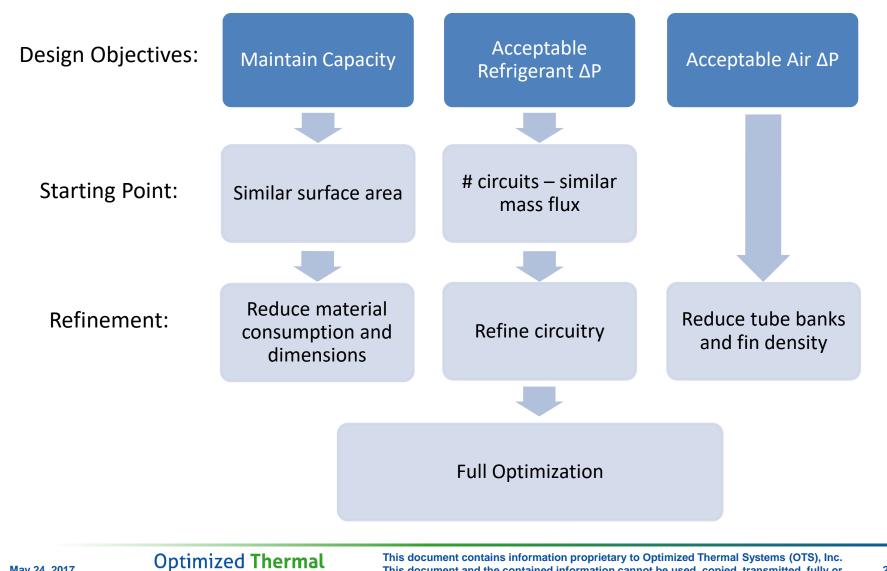
May 24, 2017

Optimized Thermal S Y S T E M S This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

Drop-In Replacement Condenser

23

- Baseline design:
 - 3/8" OD tubes
 - 2x22 tubes in 1" equilateral stagger
 - 18 fins per inch
 - 700 x 559 x 44 mm
- Requirements:

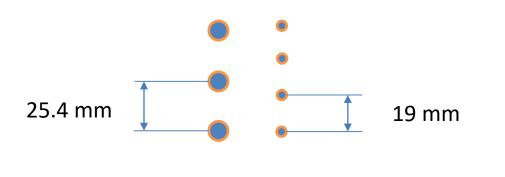

May 24, 2017

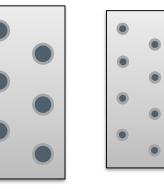
- Maintain 4 kW capacity
- Do not increase air ΔP significantly beyond baseline: 27 Pa
- Do not increase refrigerant ΔP significantly beyond baseline 6.4 kPa

Replace 3/8" tube heat exchanger with 5 mm coil

Drop-In Replacement Condenser (2)

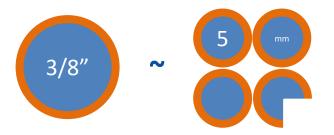
SYSTEMS

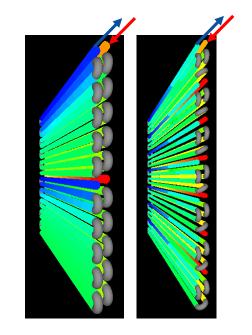

This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.


5 mm Layout

25

- Baseline design has 2x22 tubes with 1" vertical spacing
- Typical 5 mm vertical spacing is 19.05 mm:
 - Keep even number: 28 tubes vertically
- Baseline fin density is 18 FPI
 - External heat transfer area is 22.6 m²
 - 2-row 5mm pattern requires 24 FPI to achieve equivalent surface area
 - 3-row 5mm pattern meets this surface area with 16 FPI


May 24, 2017


Circuiting

- In order to maintain acceptable refrigerant pressure drops, the mass flux through tubes should not increase significantly
- Baseline has 2 circuits, mass flux, $G = \frac{\dot{m}}{A} = \frac{0.02065 \left[\frac{kg}{s}\right]}{2*\frac{\pi}{4}(0.00886 [m])^2} = 167 \left[\frac{kg}{m^2 * s}\right]$
- With 5 mm tubes, ID = 4.6 mm;

# Circuits	Mass flux [kg/m²s]
6	207
7	177
8	155

Optimized Thermal SYSTEMS

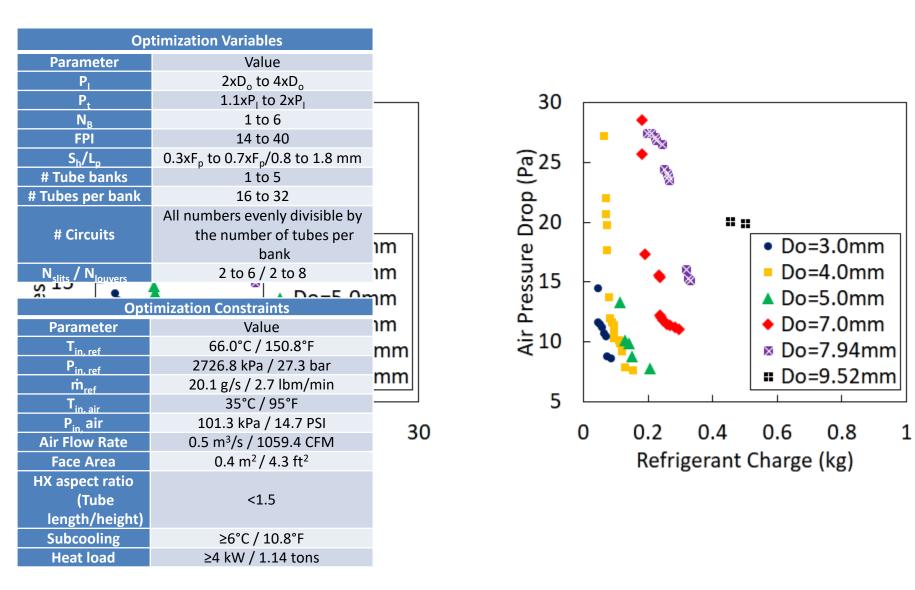
May 24, 2017

27

- 3-row, 16 FPI design has a 27 Pa pressure drop and improved performance
 - FPI could be reduced further to reduce costs and maintain capacity
- 2-row 24 FPI design has a 37 Pa air-side pressure drop: nearly a 40% increase
 - Consideration of fan curve, may allow for lower FPI design to operate at higher air flow rate and increased capacity
 - We can investigate designs that operate with equivalent fan power ($\propto Q\Delta P$)

May 24, 2017

Summary of Candidate Designs


Design	16 FPI – 3 row, 7 circuits	16 FPI – 3 row, 14 circuits	24 FPI – 2 row	17 FPI – 2 row
Air Flow Rate	100%	100%	100%	110%
Air ∆P	100%	100%	135%	83%
Fan Power	101%	101%	135%	91%
Capacity	102%	100%	99%	97%
Refrigerant Pressure Drop	139%	23%	114%	118%
Tube Material	61%	61%	40%	40%
Fin Material	86%	86%	90%	61%
Apprx. Tube Internal Volume	52%	52%	34%	34%

- May 24, 2017
- Optimized Thermal S Y S T E M S

This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

Heat Exchanger Optimization

Optimized Thermal SYSTEMS

May 24, 2017

This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.

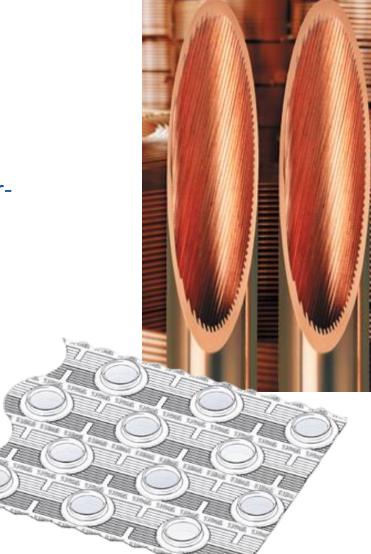
30

Summary

May 24, 2017

Optimized Thermal S Y S T E M S

5 mm HX: A Closer Look


MicrogrooveTM tube:

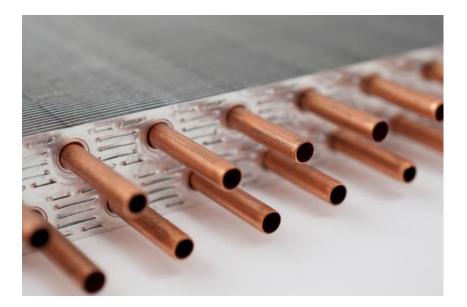
- Less material consumption
- Internally-enhanced → increased refrigerant heat transfer
- Smaller diameter → increased airside heat transfer

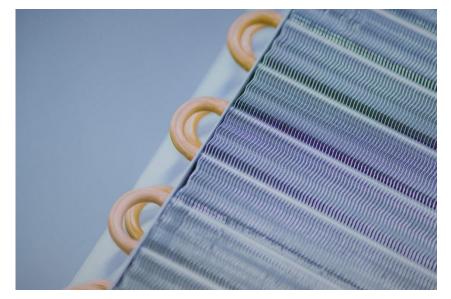
External fins:

May 24, 2017

- Customizable, with complex enhancements
- Higher fin densities
- Higher heat transfer

5 mm HX: Putting It All Together


32


Manufacturing:

- Tube expansion with mechanical or pressure expansion
- Equipment available for tube insertion and fin stacking

Design:

- Select fin and tube arrangement for acceptable air pressure drop
- Design number of circuits to maintain refrigerant pressure drop
- Utilize simulation and optimization tools to maximize performance

Optimized Thermal

May 24, 2017

Next Steps

34

- Provide your feedback! Complete the webinar surveys
- Q&A summary sheet to be provided with webinar download materials
- Don't forget to download a copy of the CoilDesigner[®] demo
- Want a sample heat exchanger?
 - Complete surveys for all three webinars
 - Examine, measure, test, share results

May 24, 2017

Thank you

Q&A

Optimized Thermal S Y S T E M S

May 24, 2017

This document contains information proprietary to Optimized Thermal Systems (OTS), Inc. This document and the contained information cannot be used, copied, transmitted, fully or partly, without prior written authorization of OTS, Inc.