

Presented at the 2022 Hot Water Forum Virtual, March 21-23

Simulations Demonstrate the Advantages of Smaller Diameter Copper Tubes in Heat Pump Water Heaters

Yoram Shabtay, President, Heat Transfer Technologies, Prospect Heights, Illinois Consultant to International Copper Association for MicroGroove Technology

Shabtay – 4D

- Material & labor costs
- HX size reduction

Introduction

Why Smaller Diameter Copper Tubes?

Fantastic Success in AC and Refrigeration

- A. Refrigerant Advantages Flammable Refrigerants (A3 and A2L) Less Volume of HFCs or HFO blends
- B. Performance Advantages Higher COP Smaller Size HX for Same Capacity

Small Diameter Copper Tube Heat Exchanger Annual Output of China (000Units)

In 2021, 44 million RAC were made using small diameter copper tubes. Source: Fbetter

Examples to Demonstrate A & B Charge Reduction from 9.52 to 5 mm (Display cabinet) Low GWP Refrigerant HPWH design (R410A to R290) (Lordan)

HXSim software was developed in China with ICA support to help manufacturers optimize heat exchanger designs using smaller diameter copper tubes.

More than 200 engineers use HXSim to design and optimize heat exchangers:

Heat Tran

HXSim Capabilities

Heat Transfer

Technologies

- Select Tube Size, Enhancements, Circuitry and Fin Types
- Make the connections
- Specify working parameters
- Output as Tables, Charts or 3D Visualizations

Evaporator Design. Blue = Cold Inlet.

HXSim simulation examples

2 2 2 C 2 4 · · × C > 3 3 4

L-Type Block Design (*top*) Result (bottom)

Shabtay - 4D

HXSim simulation examples

HPWH Evaporator design example: Blue = cold inlet

Shabtay – 4D

HXSim contains tube correlations for a wide variety of tube diameters and internal surface enhancements. Block type, dimensions, tube type, fin type and refrigerant are easily selectable through the graphical user interface.

				Tubes						
ubes Sot]	the color	tod tubor		1					
Tube	type Sm Specify	ooth <u>-</u> tube type] Below spa	ce 21 mm Update	-		50			
Row	Column	Туре	Name	Below space(mm) 🔺	Below - space of C		ŞÞ			
1	1	Enhanced	Etubeφ5.00	5.25	Columns .	t d	¦ ¢	l.†		
1	2	Enhanced	Etubeφ5.00	21.00			ðİ			
1	3	Enhanced	Etubeφ5.00	21.00		1-8	Ψ	2		
1	4	Enhanced	Etubeφ5.00	21.00	(uÎ –		25		
1	5	Enhanced	Etubeφ5.00	21.00	Para	Parameters of the sample:				
1	6	Enhanced	Etubeφ5.00	21.00	Row	Column		Below Spac		
1	7	Smooth	STubeφ5.00	21.00	1	1		C1		
1	8	Smooth	STubeo5.00	21.00	1	2		C2 C3		
	•	Smaath	STubors 00	21 00 ¥		4		C4		
			0	K Cancel						

9

Heat Tran

Technolo

HXSim simulation examples

Case studies show the advantages of using small diameter tubes.

HXSim graphical design example in 2-D and 3-D

Case 1: Condenser coil for cooling cabinet

 The original condenser has 9.52 mm tubes in four rows with eight tubes per row; the prototype has 5 mm tubes in four rows with ten tubes per row.

Parameters	Original	Prototype
Tube diameter (mm)	9.52	5
Tube length (mm)	278	278
HX depth (mm)	86.6	66
HX height (mm)	200	190.5
Number of columns	4	4
Tubes per column	8	10
Row spacing (mm)	21.65	16.5
Column space (mm)	25	19.05
Fin pitch (mm)	3	3

• The purpose of the case study is to demonstrate refrigerant charge reduction using smaller tube diameter. Both heat exchangers of this case study use R290, which is a "natural refrigerant" with an ultralow GWP of 3. Holding the refrigerant type constant, simulations illustrate the charge reduction possible in switching from 9.52 mm (3/8 in.) to 5 mm diameter copper tubes.

Original design 32 Tubes 9.52 mm

Simulation design, 40 tubes, 5 mm tubes

Heat Tra

Case 1: Simulation results

Parameters	Prototypical condenser	Condenser B-1 814		
Thermal capacity (W)	762			
Inlet pressure (kPa)	1385	1385		
Inlet Temp. (°C)	105	105		
Mass flow rate (g/s)	3.7	3.7		
Pressure drop (kPa)	2.3	40		
HTC of Ref. (W/m ² K)	1130	2016		
Sub-cooling (°C)	1.52	6.6		
Weight of Ref (g)	135	100		

No.	Parameters	Prototy pical Conden conden ser B-1 ser		Note				
1	Tube diameter, mm	9.52	5					
2	Tube length(Length), mm	278		RS				
3	HX depth (Depth), mm	86.6	66					
4	HX height(Height), mm	200	190.5	Height FBS				
5	Row	4	4	0 0				
6	Column	8	10					
7	Row space(RS), mm	21.65	16.5	Length depth				
8	Column space(CS), mm	25	19.05					
9	Fin pitch, mm	3	3					

Hence: With 5 mm tubes, coil

- capacity is higher,
- refrigerant charge is lower and
- coil envelope is smaller.

Case 2: Lordan 5mm tube HPWH example

Lordan fin vs. larger tube

Cold Climate Heat Pump Water Heater with R290

Shabtay - 4D

Cold Climate Heat Pump Water Heater with R290

Cold Climate Heat Pump Water Heater with R290

Tube OD	FPI	Num. tubes	Coil thk [mm]	Air dP [Pa]	Air vel [m/s]	Net Weight fins [kg]	Net Weight tubes [kg]	Intern vol [Liter]	Refrig dP [Kpa]	Ref flow [kg/min]	Ref Vel [m/s]	Ref charge [kg]	Output [kw]
5 mm	14	228	50.8	50	2.45	13.44	11.576	3.99	4.1	3.31	5.92	0.519	14.4
7 mm	13	228	66	62	2.45	16.225	19.355	8.58	4.7	3.31	5.51	1.131	14.35
5/16"	16	164	65	68	2.42	19.436	19.486	8.5	4.4	3.31	5.74	1.1	14.35
3/8"	17	164	88	73	2.42	28.613	23.487	12.4	3.6	3.36	4.96	1.644	14.4

Hence: With 5 mm tubes, for the same capacity (14kW), coil

- weight is lowest
- refrigerant charge is lowest and
- envelope is smaller.

Heat Transfer

Techno

Heat Transfer Technologies

Takeaways:

- 1. 5mm copper tubes helps reduce HX weight, refrigerant charge, weight of tube and fins, and HX envelope
- 2. HXSim helps design and optimize heat exchangers

HXSim Software is offered at no charge to qualified heat exchanger designers. The ICA has arranged with Shanghai Jiao Tong University to provide full working version of HXSim 3.1 *free of charge* to qualified designers.

Process:

- Download HXSim.msi from https://microgroove.net/hxsim and run it.
- Send software ID via email to yyli@craheta.org.
- Receive the registration code within 1-2 days.
- Input the registration code and finish the installation.
- Begin designs and simulations.

SJTU asks only for your name, company and email. ICA is open to partnerships and has the ability to produce prototypes in China at minimal cost.

https://microgroove.net White papers, Technical material

Heat pumps: https://microgroove.net/heat-pumps

OTS-ICA Educational Program: https://microgroove.net/ots-ica-educational-outreach

Results:

Five different optimization studies were performed by Optimized Thermal Systems in collaboration with the International Copper Association and five different manufacturers. In each case, copper tubes with diameters of five millimeters were specified and MOGA was used to optimize the configurations of heat-exchanger-geometry parameters.

Q

1. Heat pump condenser.

The MOGA-optimized designs were similar to the baseline microchannel coil with regard to airside pressure drop and capacity.

2. Window AC condenser.

MOGA designs increased the efficiency of the heat exchanger while reducing materials usage and refrigerant charge. MOGA designs improved the COP by as much as 15% and reduced material usage by more than 60%.

3. Refrigerator-freezer condenser.

Hydrocarbon refrigerant charge was dramatically reduced in the 5 mm designs. MOGA designs reduced the internal tube volume up to 41% along with a 57% reduction in overall coil volume compared to the baseline 6.25 mm copper tube designs. (Fig. 1)

4. PTAC condenser.

Raw material costs and airside pressure drop were reduced while maintaining performance. MOGA designs provided as much as 50% savings in raw material costs while keeping the pressure drop close to the baseline. The best design reduced the overall internal volume by 62%. (Fig. 2)

5. HPWH evaporator.

MOGA was used to show that capacity could be doubled by increasing fan power; and that 5 mm designs delivered more capacity than the 7.9 mm baseline heat exchanger for a given fan power.(Fig. 3)

Shabtav

The pressure rating of an R744 gas cooler can be increased in three ways::

- Increase the wall thickness
- Use a smaller diameter tube
- Use a high strength copper alloy

Hoop stress drops in the ratio of 6 to 5 to 4 as the diameter is reduced from 6/16 to 5/16 to 4/16 inches, respectively (that is, from 9.525 mm to 7.9375 mm to 6.350 mm). Lordan makes R744 gas coolers with 5 mm tube diameters. By using a Cu-Fe alloy, Lordan can reduce tube-wall thickness from 0.7 mm to 0.4 mm.

High-strength copper alloys are also used for the refrigerant lines that run to-andfrom the gas cooler. For more on this topic, see the 2019 ATMO America slideshow presentation by Yoram Shabtay: "Advantages of Small Diameter Tubes in Transcritical Refrigeration Cycles," ATMO America Conference, Atlanta, Georgia, June 2019.

https://www.slideshare.net/ATMO/advantages-of-small-diameter-tubes-in-transcritical-refrigeration-cycles

Heat Tra

Cu

International Copper Association Copper Alliance

Thank you !

Yoram SHABTAY^(a), Frank GAO^(b), Kerry SONG^(b)

(a) Heat Transfer Technologies, LLC
Prospect Heights, Illinois 60070-1063, USA, yoram@heattransfertechnologies.com
(b) International Copper Association Shanghai, 200020, China, kerry.song@copperalliance.org

Shabtay - 4D