

Optimization of MicroGroove Copper Tube Coil Designs for Flammable Refrigerants

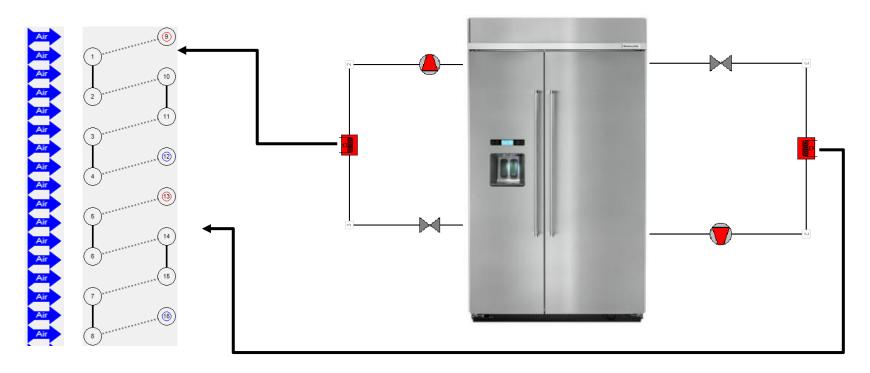
International Copper Association

July 11 -14, 2018

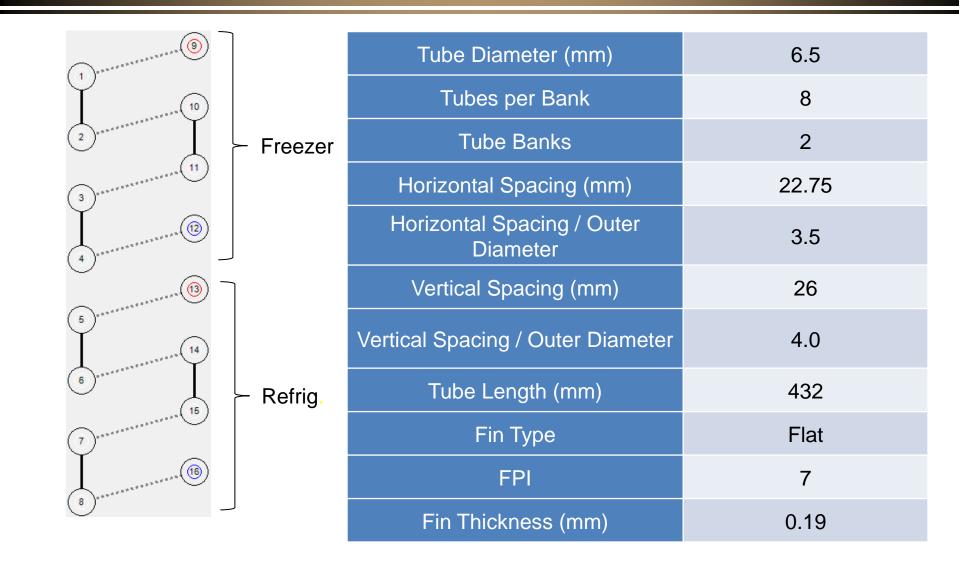
Optimized Thermal

SYSTEMS

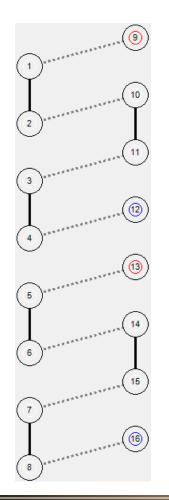
- Baseline condenser coil
 - » 6.35 mm (1/4") O.D. copper tubing with wavy fins and R134a.
- Main Motivation:
 - Max. 57g charge of Natural Refrigerant R600a while maintaining performance for condenser in domestic refrigerator application



The baseline refrigerator uses two vapor compression cycles (VCCs) which share a condenser to maintain the freezer and refrigerator temperatures

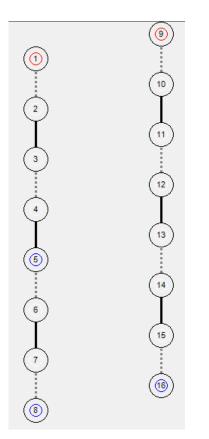

The condenser coil has two circuits, each circuit serves one of the VCCs

Baseline Condenser



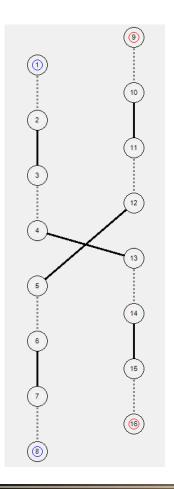
5mm Circuit Design 1

Design 1 keeps the circuit design of the baseline while reducing the tube diameter to 5mm, increasing the FPI to 10



	Baseline Dimension	New Dimension
Tube Diameter (mm)	6.5	5
Tubes per Bank	8	8
Tube Banks	2	2
Horizontal Spacing (mm)	22.75	17.5
Horizontal Spacing / Outer Diameter	3.5	3.5
Vertical Spacing (mm)	26	20
Vertical Spacing / Outer Diameter	4.0	4.0
Tube Length (mm)	432	432
Fin Type	Flat	Flat
FPI	7	10
Fin Thickness (mm)	0.19	0.14

Design 2 uses the geometry changes of Design 1, moves one of the circuits behind the other (in the airflow direction) and straightens out the circuits to keep the same tube pattern as the baseline Baseline



the baseline	Baseline Dimension	New Dimension
Tube Diameter (mm)	6.5	5
Tubes per Bank	8	8
Tube Banks	2	2
Horizontal Spacing (mm)	22.75	17.5
Horizontal Spacing / Outer Diameter	3.5	3.5
Vertical Spacing (mm)	26	20
Vertical Spacing / Outer Diameter	4.0	4.0
Tube Length (mm)	432	432
Fin Type	Flat	Flat
FPI	7	10
Fin Thickness (mm)	0.19	0.14

Design 3 is similar to Design 2 but has half of each circuit first in the airflow direction, half second

	Baseline Dimension	New Dimension
Tube Diameter (mm)	6.5	5
Tubes per Bank	8	8
Tube Banks	2	2
Horizontal Spacing (mm)	22.75	17.5
Horizontal Spacing / Outer Diameter	3.5	3.5
Vertical Spacing (mm)	26	20
Vertical Spacing / Outer Diameter	4.0	4.0
Tube Length (mm)	432	432
Fin Type	Flat	Flat
FPI	7	10
Fin Thickness (mm)	0.19	0.14

Design 4 is similar to Design 3 but splits the front-back divide into 5-3 instead of						
an even 4-4		Baseline Dimension	New Dimension			
() ()	Tube Diameter (mm)	6.5	5			
	Tubes per Bank	8	8			
	Tube Banks	2	2			
	Horizontal Spacing (mm)	22.75	17.5			
	Horizontal Spacing / Outer Diameter	3.5	3.5			
	Vertical Spacing (mm)	26	20			
5)	Vertical Spacing / Outer Diameter	4.0	4.0			
6 *****	Tube Length (mm)	432	432			
	Fin Type	Flat	Flat			
	FPI	7	7			
(3)	Fin Thickness (mm)	0.19	0.19			

Designs Summary

			(a)(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		
	Baseline	Design 1	Design 2	Design 3	Design 4
Tube Diameter (mm)	6.5	5	5	5	5
Tubes per Bank	8	8	8	8	8
					-
Tube Banks	2	2	2	2	2
Tube Banks Horizontal Spacing (mm)	2 22.75	2 22.75	2 22.75	2 22.75	
Horizontal Spacing	_	_	_	_	2
Horizontal Spacing (mm)	22.75	22.75	22.75	22.75	2 22.75
Horizontal Spacing (mm) Vertical Spacing (mm)	22.75 26	22.75 26	22.75 26	22.75 26	2 22.75 26
Horizontal Spacing (mm) Vertical Spacing (mm) Tube Length (mm)	22.75 26 432	22.75 26 432	22.75 26 432	22.75 26 432	2 22.75 26 432

All designs were evaluated using the same refrigerant inlet conditions, estimated based on limited information

	Freezer Circuit	Refrigerator Circuit	
Pressure (psi)	75.9	72.6	
Discharge temperature (°F)	126	121	
Refrigerant mass flow rate (lb/h)	3.38	2.37	
Refrigerant Used	Isobutane (R600a)		
Air Inlet Temperature (°F)	90		
Air Flow Rate (CFM)	10	00	

Circuits Analysis

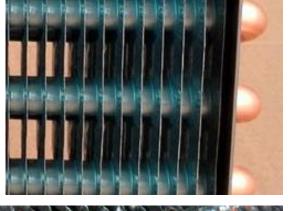
		Base	eline	Design 1		Design 2F		Design 2R		Design 3		Design 4		
	Total Air HT Area (m ²)	2.	13	2.15		2.13		2.15		2.15		2.15		
	Total Capacity (W)	23	38	24	17	235		248		247		248		
	Air Pressure Drop (Pa)	3.3	34	3.92		3.9		3.9		3.9		3.9		
	Refrigerant Pressure Drop (Pa)	28	286		570		607		583		582		547	
	Internal Volume (cc)	16	7.1	111	1.4	111	111.4 111.4		1.4	111.4		111.4		
	Fin Material Mass (g)	54	14	544		544		544		544		544		
	Tube Material Mass (g)	56	60	25	56	256		256		256		256		
	Circuit	Fre ez	Ref rig	Fre ez	Ref rig	Fre ez	Ref rig	Fre ez	Ref rig	Fre ez	Ref rig	Fre ez	Ref rig	
Both Circ On	Capacity (W)	136	101	144	102	147	88	145	103	147	101	147	102	
	Subcooling (°F)	n/a	0.7	0.9	2.8	5.2	n/a	1.9	3.9	4.0	0.0	4.1	2.0	
One Circ On	Capacity (W)	144	102	145	102	148	104	148	104	148	104	148	104	
	Subcooling (°F)	0.1	2.2	2.1	4.1	7.0	6.9	6.9	7.0	7.1	6.8	7.0	6.8	

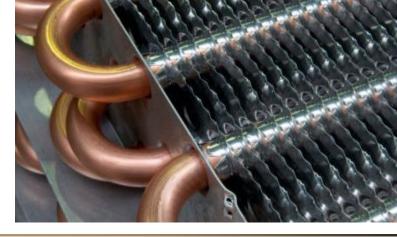
В

Series designs perform better than baseline circuit design (parallel) when only one circuit is running

All circuits in series with equivalent face area and number of tubes perform equally when one circuit is running - therefore, all designs should be evaluated for two-circuit performance Should use Design 2R, focus on two circuit

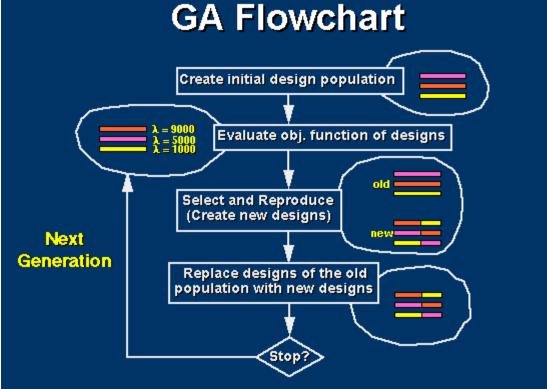
performance





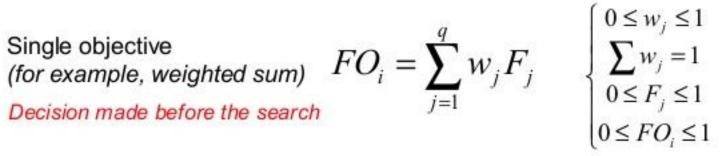
- Goal: Equal performance to the baseline while reducing refrigerant charge to R600a limits
- Multi-objective genetic algorithm (MOGA) was used to solve the optimization problem
- 5mm copper tubes was used to minimize charge
- Constraints:
 - » Heat rejection \geq to baseline
 - » Subcooling \geq to baseline
 - » Saturation temp. within 1C of baseline
 - » Air dP within acceptable range for existing fan

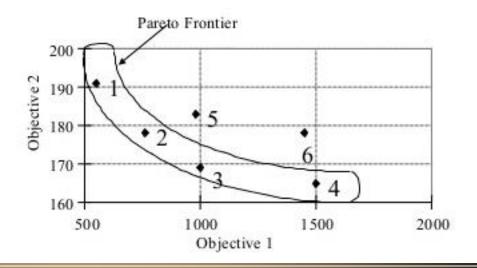
- HX design variables using 5mm OD tube :
 - » Heat exchanger length
 - » Fin density
 - » Horizontal tube spacing
 - » Vertical tube spacing
 - » Fin geometry



• Multi-objective genetic algorithm (MOGA) explained:

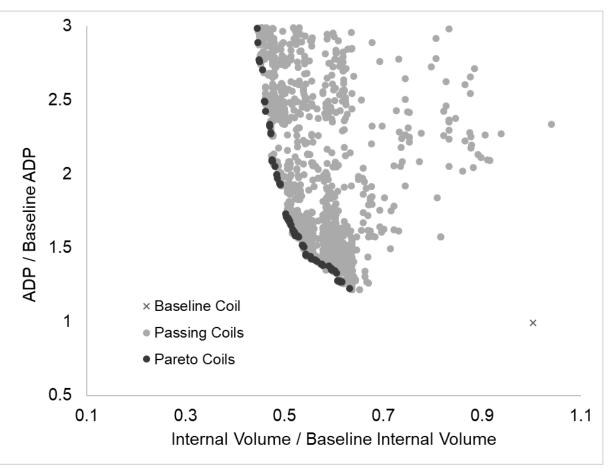
GA is a type of evolutionary algorithm


A *population* of possible solutions is evaluated in each iteration

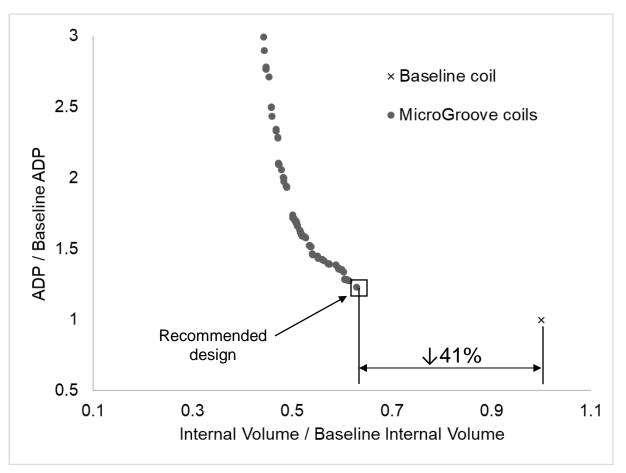


- Multi-objective algorithm:
 - » Multiple objective functions are evaluated

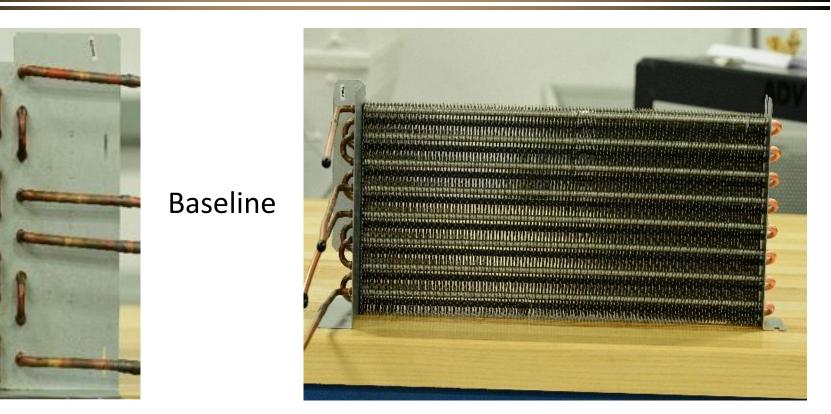
Multiobjective optimization


Decision made after the search

Optimization Study

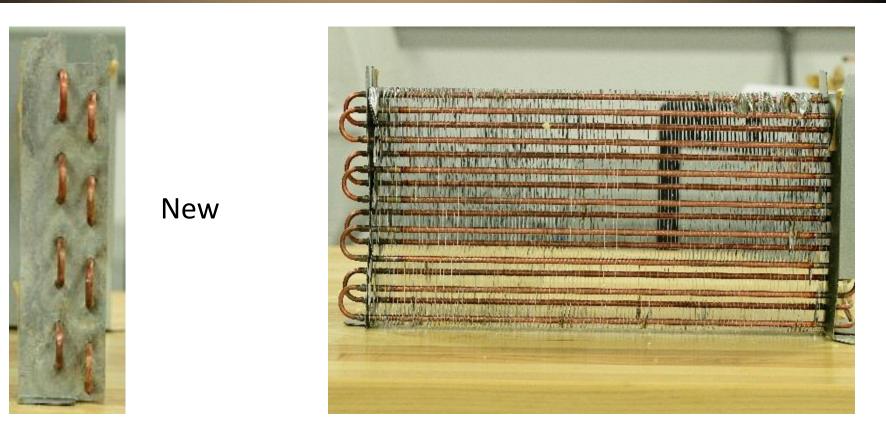


Optimization Study



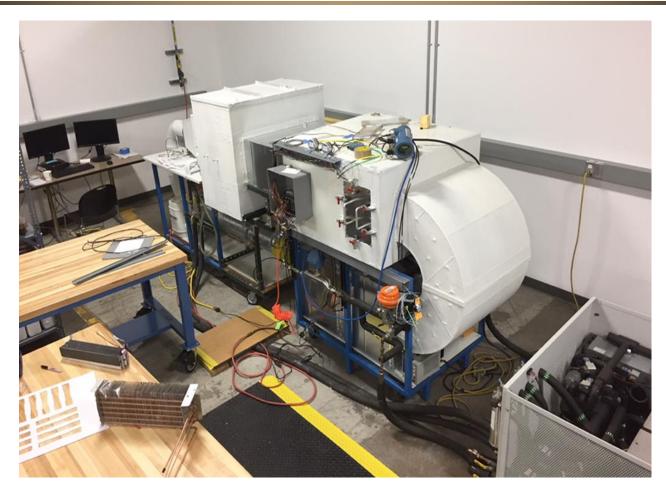
Selected prototype geometry to reduce charge:

	Baseline	New	(),	٢
Tube Diameter (mm)	6.5	5	r 🖞	(1)
Tubes per Bank	8	8	2	
Tube Banks	2	2	(3) + + + + + + + + + + + + + + + + + + +	(11)
Horizontal Spacing (mm)	22.75	22.75	e e	(12)
Vertical Spacing (mm)	26	26	4) ************************************	(\cdot)
Tube Length (mm)	432	432	(5)r************************************	5
Fin Type	Wavy	Flat	r	
Fin Density (fpi)	7	7	6 reserver 1	
Fin Thickness (mm)	0.19	0.12	(7)************************************	$\overline{0}$
			B (************************************	(6)
			Baseline	New

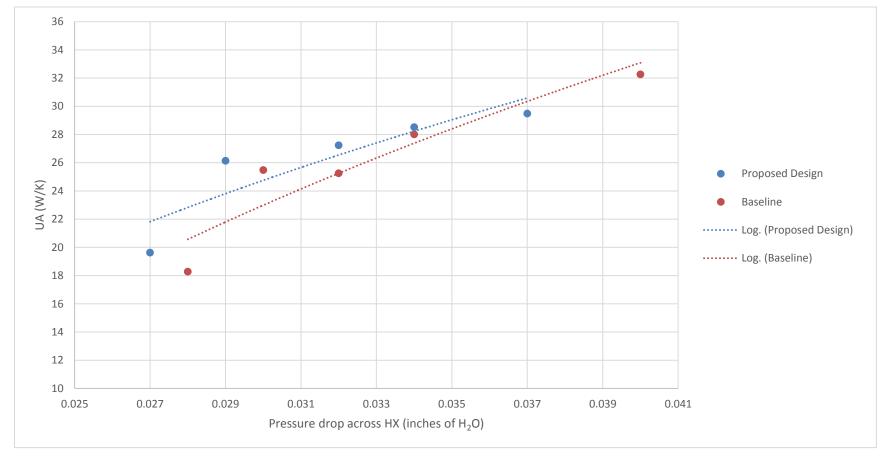

Prototype Construction

Wavy fin

Prototype Construction



No collar, flat fin



Hot water calorimeter

Airside Test Results

Overall conductance vs. pressure drop

Summary and Conclusions

- Summary:
 - » New HX design using 5mm copper tube vs. 6.5mm has
 - 37% lower internal volume
 - 25% weight reduction
 - 8% performance improvement (Can be used)
- Conclusion:
 - » Methodology used (MOGA) successful in finding optimized designs
 - » 5mm copper tube MG heat exchanger can maintain performance and allow for lower refrigerant charge in a smaller, lighter envelope, suitable for R290 and R600a natural refrigerants, and others.